Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of 
log x,log y, and 
log z.

log ((xz^(2))/(y))
Answer:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogxz2y \log \frac{x z^{2}}{y} \newlineAnswer:

Full solution

Q. Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogxz2y \log \frac{x z^{2}}{y} \newlineAnswer:
  1. Identify Properties: Identify the properties used to expand log(xz2y)\log\left(\frac{xz^{2}}{y}\right). We will use the quotient property and the product property of logarithms to expand the given expression. Quotient Property: logb(PQ)=logbPlogbQ\log_b \left(\frac{P}{Q}\right) = \log_b P - \log_b Q Product Property: logb(PQ)=logbP+logbQ\log_b (PQ) = \log_b P + \log_b Q Power Property: logb(Pk)=klogbP\log_b (P^k) = k \cdot \log_b P
  2. Apply Quotient Property: Apply the quotient property to the given logarithm.\newlineUsing the quotient property, we can separate the numerator and the denominator of the fraction inside the logarithm.\newlinelog(xz2y)=log(xz2)log(y)\log\left(\frac{xz^{2}}{y}\right) = \log(xz^{2}) - \log(y)
  3. Apply Product Property: Apply the product property to the logarithm of the numerator.\newlineNow we will separate the xx and z2z^{2} terms using the product property.\newlinelog(xz2)=log(x)+log(z2)log(xz^{2}) = log(x) + log(z^{2})
  4. Apply Power Property: Apply the power property to the logarithm of z2z^{2}. We will now apply the power property to the log(z2)\log(z^{2}) term to bring down the exponent. log(z2)=2log(z)\log(z^{2}) = 2 \cdot \log(z)
  5. Combine Results: Combine the results from Steps 22, 33, and 44 to get the final expanded form.\newlineSubstitute the expanded form of log(z2)\log(z^{2}) from Step 44 into the equation from Step 33, and then combine it with the result from Step 22.\newlinelog(xz2y)=(log(x)+2log(z))log(y)\log\left(\frac{xz^{2}}{y}\right) = (\log(x) + 2 \cdot \log(z)) - \log(y)
  6. Simplify Expression: Simplify the expression to get the final answer. log(xz2y)=log(x)+2log(z)log(y)\log\left(\frac{xz^{2}}{y}\right) = \log(x) + 2 \cdot \log(z) - \log(y)

More problems from Quotient property of logarithms