Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of 
log x,log y, and 
log z.

log ((zx^(2))/(y^(4)))
Answer:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogzx2y4 \log \frac{z x^{2}}{y^{4}} \newlineAnswer:

Full solution

Q. Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogzx2y4 \log \frac{z x^{2}}{y^{4}} \newlineAnswer:
  1. Apply Quotient Rule: Apply the quotient rule of logarithms to the expression log(zx2y4)\log\left(\frac{zx^{2}}{y^{4}}\right). Quotient rule of logarithm: log(ab)=log(a)log(b)\log\left(\frac{a}{b}\right) = \log(a) - \log(b) log(zx2y4)=log(zx2)log(y4)\log\left(\frac{zx^{2}}{y^{4}}\right) = \log(zx^{2}) - \log(y^{4})
  2. Apply Product Rule: Apply the product rule of logarithms to the term log(zx2)\log(zx^{2}).\newlineProduct rule of logarithm: log(ab)=log(a)+log(b)\log(a \cdot b) = \log(a) + \log(b)\newlinelog(zx2)=log(z)+log(x2)\log(zx^{2}) = \log(z) + \log(x^{2})
  3. Apply Power Rule: Apply the power rule of logarithms to the terms log(x2)\log(x^{2}) and log(y4)\log(y^{4}).\newlinePower rule of logarithm: log(an)=nlog(a)\log(a^{n}) = n \cdot \log(a)\newlinelog(x2)=2log(x)\log(x^{2}) = 2 \cdot \log(x)\newlinelog(y4)=4log(y)\log(y^{4}) = 4 \cdot \log(y)
  4. Substitute Results: Substitute the results from Step 33 back into the equation from Step 11.\newlinelog(zx2y4)=log(z)+2log(x)4log(y)\log\left(\frac{z x^{2}}{y^{4}}\right) = \log(z) + 2 \cdot \log(x) - 4 \cdot \log(y)
  5. Distribute and Simplify: Distribute the negative sign to 4log(y)4 \cdot \log(y) and simplify the expression.log(zx2y4)=log(z)+2log(x)4log(y)\log\left(\frac{zx^{2}}{y^{4}}\right) = \log(z) + 2 \cdot \log(x) - 4 \cdot \log(y)

More problems from Quotient property of logarithms