Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of 
log x,log y, and 
log z.

log ((x)/(z^(5)y))
Answer:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogxz5y \log \frac{x}{z^{5} y} \newlineAnswer:

Full solution

Q. Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogxz5y \log \frac{x}{z^{5} y} \newlineAnswer:
  1. Identify Properties: Identify the properties used to expand log(xz5y)\log\left(\frac{x}{z^{5}y}\right). We will use the quotient property and the power property of logarithms to expand the given expression. Quotient Property: logb(PQ)=logbPlogbQ\log_{b} \left(\frac{P}{Q}\right) = \log_{b} P - \log_{b} Q Power Property: logb(Pk)=klogbP\log_{b} (P^{k}) = k \cdot \log_{b} P
  2. Apply Quotient Property: Apply the quotient property to log(xz5y)\log\left(\frac{x}{z^{5}y}\right). Using the quotient property, we can separate the logarithm of the quotient into the difference of the logarithms of the numerator and the denominator. log(xz5y)=log(x)log(z5y)\log\left(\frac{x}{z^{5}y}\right) = \log(x) - \log(z^{5}y)
  3. Apply Quotient Property Again: Apply the quotient property again to separate log(z5y)\log(z^{5}y). We can further expand log(z5y)\log(z^{5}y) into log(z5)+log(y)\log(z^{5}) + \log(y) using the product property of logarithms, which states that the logarithm of a product is the sum of the logarithms. log(z5y)=log(z5)+log(y)\log(z^{5}y) = \log(z^{5}) + \log(y)
  4. Apply Power Property: Apply the power property to log(z5)\log(z^{5}). Using the power property, we can take the exponent out in front of the logarithm. log(z5)=5log(z)\log(z^{5}) = 5 \cdot \log(z)
  5. Substitute Expanded Log: Substitute the expanded log(z5)\log(z^{5}) back into the original expression.\newlineNow we replace log(z5)\log(z^{5}) in our expression from Step 22 with 5×log(z)5 \times \log(z).\newlinelog(xz5y)=log(x)(5×log(z)+log(y))\log\left(\frac{x}{z^{5}y}\right) = \log(x) - (5 \times \log(z) + \log(y))
  6. Distribute Negative Sign: Distribute the negative sign to both terms in the parentheses.\newlineWe need to apply the negative sign to both log(z5)\log(z^{5}) and log(y)\log(y).\newlinelog(xz5y)=log(x)5log(z)log(y)\log\left(\frac{x}{z^{5}y}\right) = \log(x) - 5 \cdot \log(z) - \log(y)

More problems from Quotient property of logarithms