Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of 
log x,log y, and 
log z.

log ((x^(4)sqrt(y^(3)))/(z^(5)))
Answer:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogx4y3z5 \log \frac{x^{4} \sqrt{y^{3}}}{z^{5}} \newlineAnswer:

Full solution

Q. Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogx4y3z5 \log \frac{x^{4} \sqrt{y^{3}}}{z^{5}} \newlineAnswer:
  1. Apply Quotient Rule: Apply the quotient rule of logarithms to the expression log(x4y3z5)\log\left(\frac{x^{4}\sqrt{y^{3}}}{z^{5}}\right). The quotient rule of logarithms states that log(ab)=log(a)log(b)\log\left(\frac{a}{b}\right) = \log(a) - \log(b).
  2. Apply Quotient Rule: Apply the quotient rule to the given logarithm. log(x4y3z5)=log(x4y3)log(z5)\log\left(\frac{x^{4}\sqrt{y^{3}}}{z^{5}}\right) = \log(x^{4}\sqrt{y^{3}}) - \log(z^{5})
  3. Apply Product Rule: Apply the product rule of logarithms to log(x4y3)\log(x^{4}\sqrt{y^{3}}). The product rule of logarithms states that log(ab)=log(a)+log(b)\log(a*b) = \log(a) + \log(b). Since y3\sqrt{y^{3}} is the same as y32y^{\frac{3}{2}}, we can write: log(x4y3)=log(x4)+log(y32)\log(x^{4}\sqrt{y^{3}}) = \log(x^{4}) + \log(y^{\frac{3}{2}})
  4. Apply Power Rule: Apply the power rule of logarithms to each term.\newlineThe power rule of logarithms states that log(an)=nlog(a)\log(a^n) = n\log(a).\newlinelog(x4)=4log(x)\log(x^{4}) = 4\log(x)\newlinelog(y32)=(32)log(y)\log(y^{\frac{3}{2}}) = \left(\frac{3}{2}\right)\log(y)\newlinelog(z5)=5log(z)\log(z^{5}) = 5\log(z)
  5. Substitute Results: Substitute the results from the power rule back into the expression from Step 22.\newlinelog(x4y3z5)=(4log(x))+(32)log(y)(5log(z))\log\left(\frac{x^{4}\sqrt{y^{3}}}{z^{5}}\right) = (4\log(x)) + \left(\frac{3}{2}\right)\log(y) - (5\log(z))

More problems from Quotient property of logarithms