Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of 
log x, and 
log y.

log x^(5)y^(2)
Answer:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx \log x , and logy \log y .\newlinelogx5y2 \log x^{5} y^{2} \newlineAnswer:

Full solution

Q. Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx \log x , and logy \log y .\newlinelogx5y2 \log x^{5} y^{2} \newlineAnswer:
  1. Identify Properties: Identify the properties used to expand log(x5y2)\log(x^5 \cdot y^2). We will use the product property and the power property of logarithms to expand the given expression. Product property: logb(mn)=logb(m)+logb(n)\log_b(m \cdot n) = \log_b(m) + \log_b(n) Power property: logb(mn)=nlogb(m)\log_b(m^n) = n \cdot \log_b(m)
  2. Apply Product Property: Apply the product property to log(x5y2)\log(x^5 \cdot y^2). Using the product property, we can separate the logarithm of the product into the sum of the logarithms of the individual factors. log(x5y2)=log(x5)+log(y2)\log(x^5 \cdot y^2) = \log(x^5) + \log(y^2)
  3. Apply Power Property: Apply the power property to each logarithm.\newlineNow we apply the power property to both log(x5)\log(x^5) and log(y2)\log(y^2) to bring the exponents out in front of the logarithms.\newlinelog(x5)=5log(x)\log(x^5) = 5 \cdot \log(x)\newlinelog(y2)=2log(y)\log(y^2) = 2 \cdot \log(y)
  4. Combine Results: Combine the results from Step 33 to get the final expanded form.\newlineCombining the results from Step 33, we get:\newlinelog(x5y2)=5log(x)+2log(y)\log(x^5 \cdot y^2) = 5 \cdot \log(x) + 2 \cdot \log(y)

More problems from Power property of logarithms