Q. Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx, and logy.logx3yAnswer:
Identify Properties: Identify the properties used to expand logx3y. We will use the product property of logarithms to separate the terms, and the power property to bring down the exponent. Product property: logb(mn)=logb(m)+logb(n) Power property: logb(mn)=n⋅logb(m)
Apply Product Property: Apply the product property to logx3y.Product Property: logb(mn)=logb(m)+logb(n)logx3y=logx3+logy
Apply Power Property: Apply the power property to logx3.Power Property: logb(mn)=n⋅logb(m)logx3=3⋅logx
Combine Results: Combine the results from Step 2 and Step 3. logx3y=3⋅logx+logy