Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of 
log x, and 
log y.

log x^(3)y
Answer:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx \log x , and logy \log y .\newlinelogx3y \log x^{3} y \newlineAnswer:

Full solution

Q. Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx \log x , and logy \log y .\newlinelogx3y \log x^{3} y \newlineAnswer:
  1. Identify Properties: Identify the properties used to expand logx3y\log x^{3}y. We will use the product property of logarithms to separate the terms, and the power property to bring down the exponent. Product property: logb(mn)=logb(m)+logb(n)\log_b(mn) = \log_b(m) + \log_b(n) Power property: logb(mn)=nlogb(m)\log_b(m^n) = n \cdot \log_b(m)
  2. Apply Product Property: Apply the product property to logx3y\log x^{3}y.\newlineProduct Property: logb(mn)=logb(m)+logb(n)\log_b(mn) = \log_b(m) + \log_b(n)\newlinelogx3y=logx3+logy\log x^{3}y = \log x^{3} + \log y
  3. Apply Power Property: Apply the power property to logx3\log x^{3}.\newlinePower Property: logb(mn)=nlogb(m)\log_b(m^n) = n \cdot \log_b(m)\newlinelogx3=3logx\log x^{3} = 3 \cdot \log x
  4. Combine Results: Combine the results from Step 22 and Step 33. logx3y=3logx+logy\log x^{3}y = 3 \cdot \log x + \log y

More problems from Power property of logarithms