Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of 
log x, and 
log y.

log ((x^(2))/(y^(4)))
Answer:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx \log x , and logy \log y .\newlinelogx2y4 \log \frac{x^{2}}{y^{4}} \newlineAnswer:

Full solution

Q. Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx \log x , and logy \log y .\newlinelogx2y4 \log \frac{x^{2}}{y^{4}} \newlineAnswer:
  1. Identify Properties: Identify the properties used to expand log(x2y4)\log\left(\frac{x^{2}}{y^{4}}\right). We will use the quotient property of logarithms to separate the numerator and denominator, and the power property to bring down the exponents. Quotient Property: logb(PQ)=logbPlogbQ\log_b \left(\frac{P}{Q}\right) = \log_b P - \log_b Q Power Property: logb(Pk)=klogbP\log_b (P^k) = k \cdot \log_b P
  2. Apply Quotient Property: Apply the quotient property to the logarithm.\newlineUsing the quotient property, we can write log(x2y4)\log\left(\frac{x^{2}}{y^{4}}\right) as the difference of two logarithms:\newlinelog(x2y4)=log(x2)log(y4)\log\left(\frac{x^{2}}{y^{4}}\right) = \log(x^{2}) - \log(y^{4})
  3. Apply Power Property: Apply the power property to both logarithms.\newlineNow we apply the power property to bring down the exponents:\newlinelog(x2)\log(x^{2}) becomes 2log(x)2 \cdot \log(x), and log(y4)\log(y^{4}) becomes 4log(y)4 \cdot \log(y).\newlineSo, log(x2y4)=2log(x)4log(y)\log\left(\frac{x^{2}}{y^{4}}\right) = 2 \cdot \log(x) - 4 \cdot \log(y)

More problems from Quotient property of logarithms