Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of 
log x,log y, and 
log z.

log ((z^(4)root(3)(y))/(x))
Answer:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogz4y3x \log \frac{z^{4} \sqrt[3]{y}}{x} \newlineAnswer:

Full solution

Q. Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogz4y3x \log \frac{z^{4} \sqrt[3]{y}}{x} \newlineAnswer:
  1. Identify Properties: Identify the properties used to expand the logarithm.\newlineWe will use the quotient property and the power property of logarithms to expand the given expression.\newlineQuotient Property: logb(PQ)=logbPlogbQ\log_b \left(\frac{P}{Q}\right) = \log_b P - \log_b Q\newlinePower Property: logb(Pk)=klogbP\log_b (P^k) = k \cdot \log_b P
  2. Apply Quotient Property: Apply the quotient property to the given logarithm.\newlineUsing the quotient property, we can separate the numerator and the denominator of the fraction inside the logarithm.\newlinelog(z4y3x)=log(z4y3)log(x)\log \left(\frac{z^{4}\sqrt[3]{y}}{x}\right) = \log (z^{4}\sqrt[3]{y}) - \log (x)
  3. Apply Power Property z4z^4: Apply the power property to the term z4z^{4} in the numerator.\newlineThe term z4z^{4} can be expanded using the power property.\newlinelog(z4y3)=4log(z)+log(y3)\log (z^{4}\sqrt[3]{y}) = 4 \cdot \log (z) + \log (\sqrt[3]{y})
  4. Apply Power Property y3\sqrt[3]{y}: Apply the power property to the term y3\sqrt[3]{y} in the numerator.\newlineThe cube root of yy is equivalent to yy raised to the power of 13\frac{1}{3}.\newlinelog(y3)=log(y13)=13log(y)\log (\sqrt[3]{y}) = \log (y^{\frac{1}{3}}) = \frac{1}{3} \cdot \log (y)
  5. Combine Results: Combine the results from steps 33 and 44.\newlineNow we combine the logarithms of z4z^{4} and y3\sqrt[3]{y} into a single expression.\newlinelog(z4y3)=4log(z)+13log(y)\log (z^{4}\sqrt[3]{y}) = 4 \cdot \log (z) + \frac{1}{3} \cdot \log (y)
  6. Final Expanded Form: Combine all the results to get the final expanded form.\newlineNow we combine the results from steps 22, 33, 44, and 55 to get the final expanded form of the original logarithm.\newlinelog(z4y3x)=4log(z)+13log(y)log(x)\log \left(\frac{z^{4}\sqrt[3]{y}}{x}\right) = 4 \cdot \log (z) + \frac{1}{3} \cdot \log (y) - \log (x)

More problems from Quotient property of logarithms