Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of 
log x,log y, and 
log z.

log ((root(3)(z^(4)))/(y^(4)x^(5)))
Answer:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogz43y4x5 \log \frac{\sqrt[3]{z^{4}}}{y^{4} x^{5}} \newlineAnswer:

Full solution

Q. Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogz43y4x5 \log \frac{\sqrt[3]{z^{4}}}{y^{4} x^{5}} \newlineAnswer:
  1. Apply Quotient Rule: Apply the quotient rule of logarithms to the expression log(z43y4x5)\log\left(\frac{\sqrt[3]{z^{4}}}{y^{4}x^{5}}\right). Quotient rule of logarithm: log(ab)=log(a)log(b)\log\left(\frac{a}{b}\right) = \log(a) - \log(b) log(z43y4x5)=log(z43)log(y4x5)\log\left(\frac{\sqrt[3]{z^{4}}}{y^{4}x^{5}}\right) = \log(\sqrt[3]{z^{4}}) - \log(y^{4}x^{5})
  2. Apply Product Rule: Apply the product rule of logarithms to the expression log(y4x5)\log(y^{4}x^{5}).\newlineProduct rule of logarithm: log(ab)=log(a)+log(b)\log(a \cdot b) = \log(a) + \log(b)\newlinelog(y4x5)=log(y4)+log(x5)\log(y^{4}x^{5}) = \log(y^{4}) + \log(x^{5})
  3. Apply Power Rule: Apply the power rule of logarithms to the expressions log(z43)\log(\sqrt[3]{z^{4}}), log(y4)\log(y^{4}), and log(x5)\log(x^{5}). Power rule of logarithm: log(an)=nlog(a)\log(a^{n}) = n \cdot \log(a) log(z43)=log(z43)=43log(z)\log(\sqrt[3]{z^{4}}) = \log(z^{\frac{4}{3}}) = \frac{4}{3} \cdot \log(z) log(y4)=4log(y)\log(y^{4}) = 4 \cdot \log(y) log(x5)=5log(x)\log(x^{5}) = 5 \cdot \log(x)
  4. Substitute Results: Substitute the results from Step 33 into the expression from Step 11.\newlinelog(z43)log(y4x5)=43log(z)(4log(y)+5log(x))\log(\sqrt[3]{z^{4}}) - \log(y^{4}x^{5}) = \frac{4}{3} \cdot \log(z) - (4 \cdot \log(y) + 5 \cdot \log(x))
  5. Distribute Negative Sign: Distribute the negative sign to the terms inside the parenthesis.\newline(43)log(z)(4log(y)+5log(x))=(43)log(z)4log(y)5log(x)(\frac{4}{3}) \cdot \log(z) - (4 \cdot \log(y) + 5 \cdot \log(x)) = (\frac{4}{3}) \cdot \log(z) - 4 \cdot \log(y) - 5 \cdot \log(x)

More problems from Quotient property of logarithms