Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


If 
| vec(a)+ vec(b)|=| vec(a)- vec(b)| prove that 
vec(a) and 
vec(b) are perpendicular.

\newlineIf a+b=ab |\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| prove that a \vec{a} and b \vec{b} are perpendicular

Full solution

Q. \newlineIf a+b=ab |\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| prove that a \vec{a} and b \vec{b} are perpendicular
  1. Calculate Magnitude Squares: Calculate the squares of the magnitudes of a+b\vec{a} + \vec{b} and ab\vec{a} - \vec{b}.
  2. Expand Using Dot Products: Expand both sides using the property of dot products.
  3. Set Equal and Simplify: Set the expanded forms equal to each other and simplify.
  4. Solve for ab\vec{a} \cdot \vec{b}: Solve for ab\vec{a} \cdot \vec{b}.

More problems from Even and odd functions