Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the logarithm.
Round your answer to the nearest thousandth.

5log_(2)(48)~~

Evaluate the logarithm.\newlineRound your answer to the nearest thousandth.\newline5log2(48) 5 \log _{2}(48) \approx

Full solution

Q. Evaluate the logarithm.\newlineRound your answer to the nearest thousandth.\newline5log2(48) 5 \log _{2}(48) \approx
  1. Problem Understanding: Understand the problem.\newlineWe need to evaluate the expression 5log2(48)5\log_2(48) and round the result to the nearest thousandth.
  2. Logarithm Power Rule: Apply the logarithm power rule.\newlineThe power rule of logarithms states that alogb(c)=logb(ca)a\log_b(c) = \log_b(c^a). We can apply this rule to simplify the expression:\newline5log2(48)=log2(485)5\log_2(48) = \log_2(48^5).
  3. Calculating 48548^5: Calculate 48548^5.\newlineUsing a calculator, we find that 485=48×48×48×48×48=25480396848^5 = 48 \times 48 \times 48 \times 48 \times 48 = 254803968.
  4. Evaluating log2(254803968)\log_2(254803968): Evaluate log2(254803968)\log_2(254803968).\newlineUsing a calculator with a base2-2 logarithm function, we find that log2(254803968)27.9307\log_2(254803968) \approx 27.9307.
  5. Rounding to Nearest Thousandth: Round the result to the nearest thousandth.\newlineRounding 27.930727.9307 to the nearest thousandth gives us 27.93127.931.

More problems from Compare linear, exponential, and quadratic growth