Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the logarithm.
Round your answer to the nearest thousandth.

log_(8)(500)~~

Evaluate the logarithm.\newlineRound your answer to the nearest thousandth.\newlinelog8(500) \log _{8}(500) \approx

Full solution

Q. Evaluate the logarithm.\newlineRound your answer to the nearest thousandth.\newlinelog8(500) \log _{8}(500) \approx
  1. Understand the Problem: Understand the problem.\newlineWe need to find the value of the logarithm of 500500 with base 88, which is written as log8(500)\log_8(500). This means we are looking for the power to which we must raise 88 to get 500500.
  2. Use Change of Base Formula: Use the change of base formula.\newlineThe change of base formula allows us to write log8(500)\log_8(500) in terms of logarithms with a base that our calculator can handle (usually base 1010 or base ee). The formula is:\newlinelog8(500)=log(500)log(8)\log_8(500) = \frac{\log(500)}{\log(8)}
  3. Calculate with Calculator: Calculate the value using a calculator.\newlineUsing a calculator, we find:\newlinelog(500)2.69897\log(500) \approx 2.69897\newlinelog(8)0.90309\log(8) \approx 0.90309\newlineNow we divide these two values to find log8(500)\log_8(500).\newlinelog8(500)2.698970.90309\log_8(500) \approx \frac{2.69897}{0.90309}
  4. Perform the Division: Perform the division.\newlineDividing the two values we get:\newlinelog8(500)2.98831\log_8(500) \approx 2.98831
  5. Round the Answer: Round the answer to the nearest thousandth.\newlineRounding 2.988312.98831 to the nearest thousandth gives us:\newlinelog8(500)2.988log_8(500) \approx 2.988

More problems from Compare linear, exponential, and quadratic growth