Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the logarithm.
Round your answer to the nearest thousandth.

2log_(6)(33)~~

Evaluate the logarithm.\newlineRound your answer to the nearest thousandth.\newline2log6(33) 2 \log _{6}(33) \approx

Full solution

Q. Evaluate the logarithm.\newlineRound your answer to the nearest thousandth.\newline2log6(33) 2 \log _{6}(33) \approx
  1. Problem Understanding: Understand the problem.\newlineWe need to evaluate the expression 2log6(33)2\log_{6}(33) and round the result to the nearest thousandth.
  2. Logarithm Power Rule: Apply the logarithm power rule.\newlineThe power rule of logarithms states that alogb(c)=logb(ca)a\log_b(c) = \log_b(c^a). We can apply this rule to simplify the expression:\newline2log6(33)=log6(332)2\log_6(33) = \log_6(33^2).
  3. Calculating 3333 Squared: Calculate 3333 squared.\newline332=33×33=108933^2 = 33 \times 33 = 1089.\newlineNow the expression is log6(1089)\log_{6}(1089).
  4. Evaluating the Logarithm: Evaluate the logarithm.\newlineWe need to find the value of log6(1089)\log_6(1089). This can be done using a calculator or logarithm tables.\newlineUsing a calculator, we find that log6(1089)4.523\log_6(1089) \approx 4.523.
  5. Rounding the Result: Round the result to the nearest thousandth.\newlineRounding 4.5234.523 to the nearest thousandth gives us 4.5234.523, as there are no additional digits to consider.

More problems from Compare linear, exponential, and quadratic growth