Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate:

log_(81)((1)/(243))
Answer:

Evaluate:\newlinelog811243 \log _{81} \frac{1}{243} \newlineAnswer:

Full solution

Q. Evaluate:\newlinelog811243 \log _{81} \frac{1}{243} \newlineAnswer:
  1. Recognize Base and Argument: Recognize the base and the argument of the logarithm. We are given the logarithm log811243\log_{81} \frac{1}{243}. We need to evaluate this logarithm.
  2. Convert to Common Base: Convert the base and the argument into powers of a common base.\newlineBoth 8181 and 243243 can be written as powers of 33, since 81=3481 = 3^4 and 243=35243 = 3^5.
  3. Rewrite Using New Expressions: Rewrite the logarithm using the new expressions for the base and the argument. log81(1243)\log_{81}\left(\frac{1}{243}\right) becomes log34(135)\log_{3^4}\left(\frac{1}{3^5}\right).
  4. Apply Change of Base Formula: Apply the change of base formula for logarithms. The change of base formula is logb(a)=logc(a)logc(b)\log_b(a) = \frac{\log_c(a)}{\log_c(b)}, where cc is a new base we choose. We can choose base 33 for convenience. log34(135)=log3(135)log3(34)\log_{3^4}\left(\frac{1}{3^5}\right) = \frac{\log_3\left(\frac{1}{3^5}\right)}{\log_3(3^4)}.
  5. Simplify Using Power Rule: Simplify the logarithms using the power rule.\newlineThe power rule of logarithms states that logb(an)=nlogb(a)\log_b(a^n) = n \cdot \log_b(a). We apply this to both the numerator and the denominator.\newlinelog3(135)/log3(34)=5log3(3)4log3(3)\log_3\left(\frac{1}{3^5}\right) / \log_3(3^4) = \frac{-5 \cdot \log_3(3)}{4 \cdot \log_3(3)}.
  6. Evaluate Logarithms: Evaluate the logarithms.\newlineSince log3(3)=1\log_3(3) = 1, we can simplify the expression further.\newline(5×log3(3))/(4×log3(3))=(5×1)/(4×1)=5/4(-5 \times \log_3(3)) / (4 \times \log_3(3)) = (-5 \times 1) / (4 \times 1) = -5 / 4.

More problems from Quotient property of logarithms