Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate:

log_(25)125
Answer:

Evaluate:\newlinelog25125 \log _{25} 125 \newlineAnswer:

Full solution

Q. Evaluate:\newlinelog25125 \log _{25} 125 \newlineAnswer:
  1. Determine Power of 2525: To evaluate log25125\log_{25}125, we need to determine what power we must raise 2525 to in order to get 125125. We can express 125125 as a power of 55, since 125125 is 535^3. Similarly, 2525 is 525^2. So, we can rewrite the expression as log52(53)\log_{5^2}(5^3).
  2. Express Numbers as Powers: Using the property of logarithms that logam(bn)=nmloga(b)\log_{a^m}(b^n) = \frac{n}{m} \cdot \log_a(b), we can simplify the expression.\newlineIn this case, log52(53)=32log5(5)\log_{5^2}(5^3) = \frac{3}{2} \cdot \log_5(5).
  3. Simplify Using Logarithm Property: We know that log5(5)\log_5(5) is 11, because 55 raised to the power of 11 is 55. So, 32×log5(5)=32×1\frac{3}{2} \times \log_5(5) = \frac{3}{2} \times 1.
  4. Calculate Logarithm Value: Multiplying 32\frac{3}{2} by 11 gives us 32\frac{3}{2}.\newlineTherefore, log25125=32\log_{25}125 = \frac{3}{2}.