Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate:

log_(25)((1)/(125))
Answer:

Evaluate:\newlinelog251125 \log _{25} \frac{1}{125} \newlineAnswer:

Full solution

Q. Evaluate:\newlinelog251125 \log _{25} \frac{1}{125} \newlineAnswer:
  1. Understand Problem: Understand the problem and identify the properties of logarithms to use.\newlineWe need to evaluate the logarithm of 1125\frac{1}{125} with base 2525. We can use the change of base formula for logarithms, which is logba=logalogb\log_{b}a = \frac{\log a}{\log b}, where all the logarithms are in the same base.
  2. Apply Change of Base: Apply the change of base formula.\newlineUsing the change of base formula, we can write the expression as:\newlinelog25(1125)=log(1125)log(25)\log_{25}\left(\frac{1}{125}\right) = \frac{\log\left(\frac{1}{125}\right)}{\log(25)}\newlineWe know that log(25)\log(25) is log base 1010 of 2525, and log(1125)\log\left(\frac{1}{125}\right) is log base 1010 of 11/125125.
  3. Evaluate Logarithms: Evaluate the logarithms.\newlineSince 2525 is 55 squared and 125125 is 55 cubed, we can rewrite the logarithms as:\newlinelog(1125)=log(1)log(125)=0log(53)=03log(5)\log\left(\frac{1}{125}\right) = \log(1) - \log(125) = 0 - \log(5^3) = 0 - 3\log(5)\newlinelog(25)=log(52)=2log(5)\log(25) = \log(5^2) = 2\log(5)
  4. Simplify Expression: Simplify the expression.\newlineNow we can divide the two expressions:\newlinelog(1125)log(25)\frac{\log\left(\frac{1}{125}\right)}{\log(25)} = 03log(5)2log(5)\frac{0 - 3\log(5)}{2\log(5)}\newlineThis simplifies to:\newline3log(5)2log(5)\frac{-3\log(5)}{2\log(5)} = 32-\frac{3}{2}
  5. Check for Errors: Check for any mathematical errors. We have used the properties of logarithms correctly and simplified the expression without any mistakes.

More problems from Quotient property of logarithms