Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate:

log_(125)((1)/(25))
Answer:

Evaluate:\newlinelog125125 \log _{125} \frac{1}{25} \newlineAnswer:

Full solution

Q. Evaluate:\newlinelog125125 \log _{125} \frac{1}{25} \newlineAnswer:
  1. Recognize base and argument: Recognize the base of the logarithm and the argument.\newlineWe have log125125\log_{125} \frac{1}{25}. We can use the change of base formula to rewrite this logarithm in terms of common logarithms or natural logarithms.\newlineChange of base formula: logb(a)=logc(a)logc(b)\log_b(a) = \frac{\log_c(a)}{\log_c(b)}, where cc is any positive number different from 11.
  2. Apply change of base formula: Apply the change of base formula using base 55, which is a common factor of both 125125 and 2525.\newlinelog125(125)=log5(125)log5(125)\log_{125}\left(\frac{1}{25}\right) = \frac{\log_{5}\left(\frac{1}{25}\right)}{\log_{5}(125)}
  3. Evaluate with base 55: Evaluate both logarithms with base 55.\newlineSince 125125 is 535^3 and 2525 is 525^2, we can rewrite the logarithms as:\newlinelog5(125)=log5(52)\log_5\left(\frac{1}{25}\right) = \log_5\left(5^{-2}\right) and log5(125)=log5(53)\log_5(125) = \log_5\left(5^3\right)
  4. Use power rule to simplify: Use the power rule of logarithms to simplify.\newlineThe power rule states that logb(an)=nlogb(a)\log_b(a^n) = n \cdot \log_b(a).\newlineTherefore, log5(52)=2log5(5)\log_5(5^{-2}) = -2 \cdot \log_5(5) and log5(53)=3log5(5)\log_5(5^3) = 3 \cdot \log_5(5)
  5. Further simplify: Since log5(5)\log_5(5) is equal to 11, we can further simplify.\newline2×log5(5)=2×1=2-2 \times \log_5(5) = -2 \times 1 = -2 and 3×log5(5)=3×1=33 \times \log_5(5) = 3 \times 1 = 3
  6. Divide for final answer: Divide the results to get the final answer. log125(125)=23\log_{125}\left(\frac{1}{25}\right) = \frac{-2}{3}

More problems from Quotient property of logarithms