Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate:
(-(3)/(2))^(4)=

Evaluate: \newline(32)4=(-\frac{3}{2})^{4}=

Full solution

Q. Evaluate: \newline(32)4=(-\frac{3}{2})^{4}=
  1. Identify Base and Exponent: Identify the base and the exponent in the expression.\newlineThe base is (32)-\left(\frac{3}{2}\right) and the exponent is 44. This means we will multiply (32)-\left(\frac{3}{2}\right) by itself 44 times.
  2. Recognize Even Exponent: Recognize that an even exponent will result in a positive number. Since the exponent is 44, which is an even number, the result of raising any real number to the 44th power will be positive, regardless of whether the base is positive or negative.
  3. Calculate Absolute Value: Calculate the absolute value of the base raised to the power of 44. \newline(32)4=(32)(32)(32)(32)\left(\frac{3}{2}\right)^4 = \left(\frac{3}{2}\right) * \left(\frac{3}{2}\right) * \left(\frac{3}{2}\right) * \left(\frac{3}{2}\right)
  4. Multiply Fractions: Multiply the fractions.\newline(32)×(32)=94(\frac{3}{2}) \times (\frac{3}{2}) = \frac{9}{4} and (32)×(32)=94(\frac{3}{2}) \times (\frac{3}{2}) = \frac{9}{4}, so now we have (94)×(94)(\frac{9}{4}) \times (\frac{9}{4}).
  5. Multiply Results: Multiply the results from Step 44.\newline(94)×(94)=8116(\frac{9}{4}) \times (\frac{9}{4}) = \frac{81}{16}
  6. Final Result: Since the original base was negative and the exponent is even, the final result will be positive.\newlineTherefore, ((32))4=8116(-\left(\frac{3}{2}\right))^4 = \frac{81}{16}.