Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.

(256^((4)/(7)))/(2^((4)/(7)))=

Evaluate.\newline25647247= \frac{256^{\frac{4}{7}}}{2^{\frac{4}{7}}}=

Full solution

Q. Evaluate.\newline25647247= \frac{256^{\frac{4}{7}}}{2^{\frac{4}{7}}}=
  1. Identify Equation & Simplify: Identify the equation and recognize that we can simplify the expression by using the property of exponents that allows us to divide two powers with the same exponent by subtracting their bases.\newline25647247=(2562)47\frac{256^{\frac{4}{7}}}{2^{\frac{4}{7}}} = \left(\frac{256}{2}\right)^{\frac{4}{7}}
  2. Calculate Bases Division: Calculate the division of the bases 256256 and 22. \newline256/2=128256 / 2 = 128
  3. Write Result as Power: Write the result of the division as a single power of 22. 128128 is a power of 22, specifically 272^7, because 22 multiplied by itself 77 times equals 128128. 128=27128 = 2^7
  4. Substitute Value in Expression: Substitute the value of 128128 with 272^7 in the original expression.\newline(25647)/(247)=(27)47\left(256^{\frac{4}{7}}\right)/\left(2^{\frac{4}{7}}\right) = \left(2^7\right)^{\frac{4}{7}}
  5. Simplify Exponents: Simplify the exponents by multiplying them.\newlineWhen raising a power to another power, we multiply the exponents.\newline(27)47=27×47(2^7)^{\frac{4}{7}} = 2^{7 \times \frac{4}{7}}
  6. Calculate Exponents: Calculate the multiplication and division of the exponents. 7×4/7=47 \times 4 / 7 = 4
  7. Write Final Expression: Write the final simplified expression.\newline27×4/7=242^{7 \times 4 / 7} = 2^4
  8. Calculate Final Value: Calculate the value of 242^4. \newline24=2×2×2×22^4 = 2 \times 2 \times 2 \times 2\newline24=162^4 = 16