Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.

((1)/(81))^((1)/(2))*((1)/(81))^(-(3)/(4))=

Evaluate.\newline(181)12(181)34= \left(\frac{1}{81}\right)^{\frac{1}{2}} \cdot\left(\frac{1}{81}\right)^{-\frac{3}{4}}=

Full solution

Q. Evaluate.\newline(181)12(181)34= \left(\frac{1}{81}\right)^{\frac{1}{2}} \cdot\left(\frac{1}{81}\right)^{-\frac{3}{4}}=
  1. Problem Understanding: Understand the problem.\newlineWe need to evaluate the expression ((1)/(81))((1)/(2))((1)/(81))((3)/(4))((1)/(81))^((1)/(2))*((1)/(81))^(-(3)/(4)). This involves working with exponents and understanding the properties of exponents.
  2. Exponent Properties: Apply the properties of exponents.\newlineWhen multiplying expressions with the same base, we add the exponents. So, we can rewrite the expression as (181)(1234)\left(\frac{1}{81}\right)^{\left(\frac{1}{2} - \frac{3}{4}\right)}.
  3. Exponent Subtraction: Subtract the exponents.\newline(12)(34)=(24)(34)=(14)(\frac{1}{2}) - (\frac{3}{4}) = (\frac{2}{4}) - (\frac{3}{4}) = -(\frac{1}{4}).\newlineSo, the expression now is ((181)(14))((\frac{1}{81})^{-(\frac{1}{4})}).
  4. Base Evaluation: Evaluate the base.\newlineThe base is 181\frac{1}{81}, which is the same as 81181^{-1}.
  5. Negative Exponent Rule: Apply the negative exponent rule.\newlineA negative exponent means we take the reciprocal of the base. So, (181)14(\frac{1}{81})^{-\frac{1}{4}} is the same as (811)14(81^{1})^{\frac{1}{4}}.
  6. Fourth Root Evaluation: Evaluate the fourth root of 8181. The fourth root of 8181 is 33 because 34=813^4 = 81. So, the final answer is 33.