Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If the projections of the legs onto the hypotenuse in a right triangle are, respectively, 6cm and 
12cm, then the triangle's area is equal to:
(A) 18cm^(2)
(B) 18sqrt(2)cm^(2)
(C) 36sqrt()3cm^(2)
(D) 18sqrt3cm^(2)
(E) 54sqrt()2cm^(2)

If the projections of the legs onto the hypotenuse in a right triangle are, respectively, 6 cm 6 \mathrm{~cm} and 12 cm 12 \mathrm{~cm} , then the triangle's area is equal to:\newline(A) 18 cm2 18 \mathrm{~cm}^{2} \newline(B) 182 cm2 18 \sqrt{ } 2 \mathrm{~cm}^{2} \newline(C) 363 cm2 36 \sqrt{ } 3 \mathrm{~cm}^{2} \newline(D) 183 cm2 18 \sqrt{3} \mathrm{~cm}^{2} \newline(E) 542 cm2 54 \sqrt{ } 2 \mathrm{~cm}^{2}

Full solution

Q. If the projections of the legs onto the hypotenuse in a right triangle are, respectively, 6 cm 6 \mathrm{~cm} and 12 cm 12 \mathrm{~cm} , then the triangle's area is equal to:\newline(A) 18 cm2 18 \mathrm{~cm}^{2} \newline(B) 182 cm2 18 \sqrt{ } 2 \mathrm{~cm}^{2} \newline(C) 363 cm2 36 \sqrt{ } 3 \mathrm{~cm}^{2} \newline(D) 183 cm2 18 \sqrt{3} \mathrm{~cm}^{2} \newline(E) 542 cm2 54 \sqrt{ } 2 \mathrm{~cm}^{2}
  1. Denote legs and hypotenuse: Let's denote the legs of the right triangle as aa and bb, and the hypotenuse as cc. The projections of the legs onto the hypotenuse are given as 66 cm and 1212 cm. According to the properties of right triangles, the product of the projections is equal to the area of the triangle. So, the area (AA) can be calculated as:\newlineA=(projection of a onto c)×(projection of b onto c)A = (\text{projection of } a \text{ onto } c) \times (\text{projection of } b \text{ onto } c)\newlineA=6 cm×12 cmA = 6 \text{ cm} \times 12 \text{ cm}\newlineA=72 cm2A = 72 \text{ cm}^2

More problems from Pascal's triangle and the Binomial Theorem