Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(9-i)/(-4+5i)

Divide the following complex numbers.\newline9i4+5i \frac{9-i}{-4+5 i}

Full solution

Q. Divide the following complex numbers.\newline9i4+5i \frac{9-i}{-4+5 i}
  1. Write Problem: Write down the problem to solve.\newlineWe need to divide the complex number (9i)(9-i) by (4+5i)(-4+5i).
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineThe conjugate of (4+5i)(-4+5i) is (45i)(-4-5i). We multiply both the numerator and the denominator by this conjugate to remove the imaginary part from the denominator.\newline(9i)(45i)(4+5i)(45i)\frac{(9-i) \cdot (-4-5i)}{(-4+5i) \cdot (-4-5i)}
  3. Multiply Numerator: Perform the multiplication in the numerator.\newline(9i)×(45i)=9×(4)+9×(5i)i×(4)i×(5i)(9-i) \times (-4-5i) = 9\times(-4) + 9\times(-5i) - i\times(-4) - i\times(-5i)\newline=3645i+4i+5= -36 - 45i + 4i + 5\newline=3141i= -31 - 41i
  4. Multiply Denominator: Perform the multiplication in the denominator.\newline(4+5i)×(45i)=(4)×(4)+(4)×(5i)+5i×(4)+5i×(5i)((-4+5i) \times (-4-5i) = (-4)\times(-4) + (-4)\times(-5i) + 5i\times(-4) + 5i\times(-5i)(\newline= 16 + 20i - 20i - 25i^2(\newline\)Since \$i^2 = -1\), we have:(\newline\)= \(16\) - \(25\)(\(-1\))(\newline\)= \(16\) + \(25\)(\newline\)= \(41\)
  5. Divide Results: Divide the results from Step \(3\) by the result from Step \(4\).\(\newline\)\((-31 - 41i) / 41\)\(\newline\)\(= -\frac{31}{41} - (\frac{41i}{41})\)\(\newline\)\(= -\frac{31}{41} - i\)

More problems from Add, subtract, multiply, and divide polynomials