Write Problem: Write down the problem to solve.We need to divide the complex number (9−i) by (−4+5i).
Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.The conjugate of (−4+5i) is (−4−5i). We multiply both the numerator and the denominator by this conjugate to remove the imaginary part from the denominator.(−4+5i)⋅(−4−5i)(9−i)⋅(−4−5i)
Multiply Numerator: Perform the multiplication in the numerator.(9−i)×(−4−5i)=9×(−4)+9×(−5i)−i×(−4)−i×(−5i)=−36−45i+4i+5=−31−41i
Multiply Denominator: Perform the multiplication in the denominator.(−4+5i)×(−4−5i)=(−4)×(−4)+(−4)×(−5i)+5i×(−4)+5i×(−5i)(= 16 + 20i - 20i - 25i^2(\newline\)Since \$i^2 = -1\), we have:(\newline\)= \(16\) - \(25\)(\(-1\))(\newline\)= \(16\) + \(25\)(\newline\)= \(41\)
Divide Results: Divide the results from Step \(3\) by the result from Step \(4\).\(\newline\)\((-31 - 41i) / 41\)\(\newline\)\(= -\frac{31}{41} - (\frac{41i}{41})\)\(\newline\)\(= -\frac{31}{41} - i\)
More problems from Add, subtract, multiply, and divide polynomials