Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(-9-6i)/(-3-2i)

Divide the following complex numbers.\newline96i32i \frac{-9-6 i}{-3-2 i}

Full solution

Q. Divide the following complex numbers.\newline96i32i \frac{-9-6 i}{-3-2 i}
  1. Multiply numerator by conjugate: To divide the complex numbers (96i)(-9-6i) by (32i)(-3-2i), we need to multiply the numerator and the denominator by the conjugate of the denominator to remove the imaginary part from the denominator.\newlineThe conjugate of (32i)(-3-2i) is (3+2i)(-3+2i).
  2. Simplify the multiplication: Multiply the numerator (96i)(-9-6i) by the conjugate of the denominator (3+2i)(-3+2i).\newline(96i)×(3+2i)=(9×3)+(9×2i)+(6i×3)+(6i×2i)(-9-6i) \times (-3+2i) = (-9 \times -3) + (-9 \times 2i) + (-6i \times -3) + (-6i \times 2i)
  3. Replace i2i^2 and simplify: Simplify the multiplication.(9×3)+(9×2i)+(6i×3)+(6i×2i)=2718i+18i12i2(-9 \times -3) + (-9 \times 2i) + (-6i \times -3) + (-6i \times 2i) = 27 - 18i + 18i - 12i^2Remember that i2=1i^2 = -1.
  4. Multiply denominator by conjugate: Replace i2i^2 with 1-1 and simplify the expression.\newline2718i+18i12(1)=27+12=3927 - 18i + 18i - 12(-1) = 27 + 12 = 39\newlineThe imaginary parts cancel out: 18i+18i=0-18i + 18i = 0
  5. Simplify the multiplication: Now, multiply the denominator (32i)(-3-2i) by its conjugate (3+2i)(-3+2i).(32i)×(3+2i)=(3×3)+(3×2i)+(2i×3)+(2i×2i)(-3-2i) \times (-3+2i) = (-3 \times -3) + (-3 \times 2i) + (-2i \times -3) + (-2i \times 2i)
  6. Obtain simplified numerator and denominator: Simplify the multiplication.\newline(3×3)+(3×2i)+(2i×3)+(2i×2i)=96i+6i4i2(-3 \times -3) + (-3 \times 2i) + (-2i \times -3) + (-2i \times 2i) = 9 - 6i + 6i - 4i^2\newlineAgain, replace i2i^2 with 1-1.
  7. Divide numerator by denominator: Replace i2i^2 with 1-1 and simplify the expression.\newline96i+6i4(1)=9+4=139 - 6i + 6i - 4(-1) = 9 + 4 = 13\newlineThe imaginary parts cancel out: 6i+6i=0-6i + 6i = 0
  8. Divide numerator by denominator: Replace i2i^2 with 1-1 and simplify the expression.\newline96i+6i4(1)=9+4=139 - 6i + 6i - 4(-1) = 9 + 4 = 13\newlineThe imaginary parts cancel out: 6i+6i=0-6i + 6i = 0 Now we have the simplified numerator and denominator.\newlineThe numerator is 3939 and the denominator is 1313.\newlineDivide the numerator by the denominator to get the final result.\newline39/13=339 / 13 = 3

More problems from Add, subtract, multiply, and divide polynomials