Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(9-2i)/(1-4i)

Divide the following complex numbers.\newline92i14i \frac{9-2 i}{1-4 i}

Full solution

Q. Divide the following complex numbers.\newline92i14i \frac{9-2 i}{1-4 i}
  1. Multiply Conjugate: To divide complex numbers, we multiply the numerator and denominator by the conjugate of the denominator. The conjugate of (14i)(1-4i) is (1+4i)(1+4i).\newline(92i14i)(1+4i1+4i)(\frac{9-2i}{1-4i}) \cdot (\frac{1+4i}{1+4i})
  2. Multiply Numerators and Denominators: Now, we multiply the numerators together and the denominators together.\newlineNumerator: (92i)(1+4i)(9-2i)(1+4i)\newlineDenominator: (14i)(1+4i)(1-4i)(1+4i)
  3. Multiply Numerators: First, we'll multiply out the numerator.\newline(92i)(1+4i)=9(1)+9(4i)2i(1)2i(4i)(9-2i)(1+4i) = 9(1) + 9(4i) - 2i(1) - 2i(4i)\newline=9+36i2i8i2= 9 + 36i - 2i - 8i^2\newlineSince i2=1i^2 = -1, we replace 8i2-8i^2 with 88.\newline=9+36i2i+8= 9 + 36i - 2i + 8\newline=17+34i= 17 + 34i
  4. Multiply Denominators: Next, we'll multiply out the denominator.\newline(14i)(1+4i)=1(1)+1(4i)4i(1)4i(4i)(1-4i)(1+4i) = 1(1) + 1(4i) - 4i(1) - 4i(4i)\newline=1+4i4i16i2= 1 + 4i - 4i - 16i^2\newlineAgain, since i2=1i^2 = -1, we replace 16i2-16i^2 with 1616.\newline=116= 1 - 16\newline=15= -15
  5. Simplify Numerator and Denominator: Now we have the simplified numerator and denominator.\newlineNumerator: 17+34i17 + 34i\newlineDenominator: 15-15\newlineTo divide, we split the real and imaginary parts and divide each by the denominator.\newline(17/15)+(34i/15)(17/-15) + (34i/-15)
  6. Split Real and Imaginary Parts: Simplify the real and imaginary parts separately.\newlineReal part: 1715=1715\frac{17}{-15} = -\frac{17}{15}\newlineImaginary part: 34i15=34i15\frac{34i}{-15} = -\frac{34i}{15}
  7. Simplify Real and Imaginary Parts: Combine the real and imaginary parts to get the final answer. \newline17153415i-\frac{17}{15} - \frac{34}{15}i

More problems from Add, subtract, multiply, and divide polynomials