Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(-8-6i)/(3+i)

Divide the following complex numbers.\newline86i3+i \frac{-8-6 i}{3+i}

Full solution

Q. Divide the following complex numbers.\newline86i3+i \frac{-8-6 i}{3+i}
  1. Multiply by conjugate: To divide complex numbers, we multiply the numerator and denominator by the conjugate of the denominator. The conjugate of (3+i)(3+i) is (3i)(3-i).\newline86i3+i×3i3i\frac{-8-6i}{3+i} \times \frac{3-i}{3-i}
  2. Multiply numerators and denominators: Now, we multiply the numerators together and the denominators together.\newlineNumerator: (86i)(3i)(-8-6i)(3-i)\newlineDenominator: (3+i)(3i)(3+i)(3-i)
  3. Multiply out the numerator: First, we'll multiply out the numerator.\newline(86i)(3i)=838(i)6i36i(i)(-8-6i)(3-i) = -8\cdot3 -8\cdot(-i) -6i\cdot3 -6i\cdot(-i)\newline=24+8i18i+6i2= -24 + 8i - 18i + 6i^2\newlineSince i2=1i^2 = -1, we replace i2i^2 with 1-1.\newline=2410i+6(1)= -24 - 10i + 6(-1)\newline=2410i6= -24 - 10i - 6\newline=3010i= -30 - 10i
  4. Multiply out the denominator: Next, we'll multiply out the denominator.\newline(3+i)(3i)=33+3(i)+i3ii(3+i)(3-i) = 3\cdot 3 + 3\cdot (-i) + i\cdot 3 - i\cdot i\newline=93i+3ii2= 9 - 3i + 3i - i^2\newlineAgain, since i2=1i^2 = -1, we replace i2i^2 with 1-1.\newline=91= 9 - 1\newline=8= 8
  5. Simplify numerator and denominator: Now we have the simplified numerator and denominator.\newlineNumerator: 3010i-30 - 10i\newlineDenominator: 88\newlineWe divide the numerator by the denominator.\newline(3010i)/8(-30 - 10i) / 8
  6. Divide numerator by denominator: Divide both the real part and the imaginary part by 88. \newlineReal part: 30/8=3.75-30/8 = -3.75\newlineImaginary part: 10i/8=1.25i-10i/8 = -1.25i\newlineSo the division gives us 3.751.25i-3.75 - 1.25i.

More problems from Add, subtract, multiply, and divide polynomials