Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(8-2i)/(-4+i)

Divide the following complex numbers.\newline82i4+i \frac{8-2 i}{-4+i}

Full solution

Q. Divide the following complex numbers.\newline82i4+i \frac{8-2 i}{-4+i}
  1. Problem Statement: Write down the problem to solve.\newlineDivide the complex numbers (82i)(8-2i) by (4+i)(-4+i).
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of (4+i)(-4+i) is (4i)(-4-i). We multiply both the numerator and the denominator by this conjugate to remove the imaginary part from the denominator. (82i)(4i)(4+i)(4i)\frac{(8-2i)(-4-i)}{(-4+i)(-4-i)}
  3. Numerator Multiplication: Perform the multiplication in the numerator.\newline(82i)(4i)=8(4)+8(i)2i(4)2i(i)(8-2i)(-4-i) = 8(-4) + 8(-i) - 2i(-4) - 2i(-i)\newline=328i+8i+2i2= -32 - 8i + 8i + 2i^2\newlineSince i2=1i^2 = -1, we replace i2i^2 with 1-1.\newline=328i+8i2= -32 - 8i + 8i - 2\newline=322= -32 - 2\newline=34= -34
  4. Denominator Multiplication: Perform the multiplication in the denominator.\newline(-4+i)(-4-i) = (-4)(-4) - 4i + 4i - i^2\(\newline= 16 - i^2\newlineSince \$i^2 = -1\), we replace \(i^2\) with \(-1\).\(\newline\)= \(16\) - (\(-1\))\(\newline\)= \(16\) + \(1\)\(\newline\)= \(17\)\)
  5. Division Result: Write the result of the division.\(\newline\)The result of the division is the numerator divided by the denominator.\(\newline\)\((-34) / (17)\)
  6. Simplify Result: Simplify the result.\(\newline\)\(-34\) divided by \(17\) is \(-2\).\(\newline\)The final result is \(-2\).

More problems from Add, subtract, multiply, and divide polynomials