Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(-8+24 i)/(4-4i)

Divide the following complex numbers.\newline8+24i44i \frac{-8+24 i}{4-4 i}

Full solution

Q. Divide the following complex numbers.\newline8+24i44i \frac{-8+24 i}{4-4 i}
  1. Multiply Conjugate: To divide complex numbers, we multiply the numerator and denominator by the conjugate of the denominator. The conjugate of (44i)(4-4i) is (4+4i)(4+4i).\newline(8+24i)/(44i)(4+4i)/(4+4i)(-8+24i)/(4-4i) \cdot (4+4i)/(4+4i)
  2. Multiply Numerators and Denominators: Now, we multiply the numerators and the denominators separately.\newlineNumerator: (8+24i)(4+4i)(-8+24i)(4+4i)\newlineDenominator: (44i)(4+4i)(4-4i)(4+4i)
  3. Multiply Numerators: First, we'll multiply the numerators.\newline(8)(4)+(8)(4i)+(24i)(4)+(24i)(4i)(-8)(4) + (-8)(4i) + (24i)(4) + (24i)(4i)\newline=3232i+96i96i2= -32 - 32i + 96i - 96i^2\newlineSince i2=1i^2 = -1, we replace i2i^2 with 1-1.\newline=3232i+96i+96= -32 - 32i + 96i + 96\newline=64+64i= 64 + 64i
  4. Multiply Denominators: Next, we'll multiply the denominators.\newline(4)(4)+(4)(4i)(4i)(4)(4i)(4i)(4)(4) + (4)(4i) - (4i)(4) - (4i)(4i)\newline=16+16i16i16i2= 16 + 16i - 16i - 16i^2\newlineAgain, replacing i2i^2 with 1-1.\newline=16+16i16i+16= 16 + 16i - 16i + 16\newline=32= 32
  5. Simplify Numerator and Denominator: Now we have the simplified numerator and denominator.\newlineNumerator: 64+64i64 + 64i\newlineDenominator: 3232\newlineWe divide both the real and imaginary parts of the numerator by the denominator.\newline64+64i32\frac{64 + 64i}{32}
  6. Divide Real and Imaginary Parts: Divide the real and imaginary parts by 3232. \newlineReal part: 64/32=264 / 32 = 2 \newlineImaginary part: 64i/32=2i64i / 32 = 2i \newlineSo the division gives us 2+2i2 + 2i.

More problems from Add, subtract, multiply, and divide polynomials