Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(8+19 i)/(4-3i)

Divide the following complex numbers.\newline8+19i43i \frac{8+19 i}{4-3 i}

Full solution

Q. Divide the following complex numbers.\newline8+19i43i \frac{8+19 i}{4-3 i}
  1. Write Problem: Write down the problem to solve.\newlineDivide the complex numbers (8+19i)(8+19i) by (43i)(4-3i).
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineThe conjugate of (43i)(4-3i) is (4+3i)(4+3i). We multiply both the numerator and the denominator by this conjugate to eliminate the imaginary part in the denominator.\newline(8+19i)(4+3i)(43i)(4+3i)\frac{(8+19i)(4+3i)}{(4-3i)(4+3i)}
  3. Expand Numerator: Expand the numerator using the distributive property (FOIL method). \newline(8+19i)(4+3i)=84+83i+19i4+19i3i(8+19i)(4+3i) = 8\cdot 4 + 8\cdot 3i + 19i\cdot 4 + 19i\cdot 3i\newline=32+24i+76i+57i2= 32 + 24i + 76i + 57i^2\newlineSince i2=1i^2 = -1, replace 57i257i^2 with 57-57.\newline=32+24i+76i57= 32 + 24i + 76i - 57\newline=(3257)+(24i+76i)= (32 - 57) + (24i + 76i)\newline=25+100i= -25 + 100i
  4. Expand Denominator: Expand the denominator using the difference of squares.\newline(43i)(4+3i)=42(3i)2(4-3i)(4+3i) = 4^2 - (3i)^2\newline=169i2= 16 - 9i^2\newlineSince i2=1i^2 = -1, replace 9i2-9i^2 with 99.\newline=16+9= 16 + 9\newline=25= 25
  5. Divide Simplified: Divide the simplified numerator by the simplified denominator.\newline(25+100i)/25(-25 + 100i) / 25\newline= (25/25)+(100i/25)(-25/25) + (100i/25)\newline= 1+4i-1 + 4i

More problems from Add, subtract, multiply, and divide polynomials