Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(7+17 i)/(2+3i)

Divide the following complex numbers.\newline7+17i2+3i \frac{7+17 i}{2+3 i}

Full solution

Q. Divide the following complex numbers.\newline7+17i2+3i \frac{7+17 i}{2+3 i}
  1. Multiplying Numerators and Denominators: Now we multiply the numerators and the denominators separately.\newlineNumerator: (7+17i)(23i)(7+17i)(2-3i)\newlineDenominator: (2+3i)(23i)(2+3i)(2-3i)
  2. Expanding the Numerator: First, we'll expand the numerator using the distributive property (FOIL method).\newline(7+17i)(23i)=7(2)+7(3i)+17i(2)+17i(3i)(7+17i)(2-3i) = 7(2) + 7(-3i) + 17i(2) + 17i(-3i)\newline=1421i+34i51i2= 14 - 21i + 34i - 51i^2\newlineSince i2=1i^2 = -1, we replace 51i2-51i^2 with 5151.\newline=1421i+34i+51= 14 - 21i + 34i + 51\newline=65+13i= 65 + 13i
  3. Expanding the Denominator: Next, we'll expand the denominator. Since we're multiplying a complex number by its conjugate, the result will be a real number.\newline(2+3i)(23i)=2(2)+2(3i)+3i(2)3i(3i)(2+3i)(2-3i) = 2(2) + 2(-3i) + 3i(2) - 3i(3i)\newline=46i+6i9i2= 4 - 6i + 6i - 9i^2\newlineAgain, replacing i2i^2 with 1-1 gives us:\newline=49(1)= 4 - 9(-1)\newline=4+9= 4 + 9\newline=13= 13
  4. Simplifying the Numerator and Denominator: Now we have the simplified numerator and denominator:\newlineNumerator: 65+13i65 + 13i\newlineDenominator: 1313\newlineWe divide the real and imaginary parts of the numerator by the denominator separately.\newlineReal part: 6513\frac{65}{13}\newlineImaginary part: 13i13\frac{13i}{13}
  5. Dividing the Real and Imaginary Parts: Dividing the real part: 6513=5\frac{65}{13} = 5 Dividing the imaginary part: 13i13=i\frac{13i}{13} = i So the quotient is: 5+i5 + i

More problems from Add, subtract, multiply, and divide polynomials