Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(-6+8i)/(-4-3i)

Divide the following complex numbers.\newline6+8i43i \frac{-6+8 i}{-4-3 i}

Full solution

Q. Divide the following complex numbers.\newline6+8i43i \frac{-6+8 i}{-4-3 i}
  1. Multiply by conjugate: Multiply the numerator and denominator by the conjugate of the denominator: (6+8i43i)(4+3i4+3i)\left(\frac{-6+8i}{-4-3i}\right) \cdot \left(\frac{-4+3i}{-4+3i}\right)
  2. Multiply numerators: First, we'll multiply the numerators:\newline(6+8i)×(4+3i)=(6)(4)+(6)(3i)+(8i)(4)+(8i)(3i)(-6+8i) \times (-4+3i) = (-6)(-4) + (-6)(3i) + (8i)(-4) + (8i)(3i)\newline=2418i32i+24i2= 24 - 18i - 32i + 24i^2\newlineSince i2=1i^2 = -1, we replace 24i224i^2 with 24(1)24(-1):\newline=2418i32i24= 24 - 18i - 32i - 24\newline=242418i32i= 24 - 24 - 18i - 32i\newline=050i= 0 - 50i\newline=50i= -50i
  3. Replace i2i^2: Now, we'll multiply the denominators:\newline(43i)(4+3i)=(4)(4)+(4)(3i)(3i)(4)(3i)(3i)(-4-3i) * (-4+3i) = (-4)(-4) + (-4)(3i) - (3i)(-4) - (3i)(3i)\newline=1612i+12i9i2= 16 - 12i + 12i - 9i^2\newlineAgain, replacing i2i^2 with 1-1:\newline=1612i+12i+9= 16 - 12i + 12i + 9\newline=16+9= 16 + 9\newline=25= 25
  4. Multiply denominators: Finally, we divide the results of the numerators by the results of the denominators: (50i)/25=2i(-50i) / 25 = -2i

More problems from Add, subtract, multiply, and divide polynomials