Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(4+2i)/(-1+i)

Divide the following complex numbers.\newline4+2i1+i \frac{4+2 i}{-1+i}

Full solution

Q. Divide the following complex numbers.\newline4+2i1+i \frac{4+2 i}{-1+i}
  1. Multiply by Conjugate: To divide the complex numbers (4+2i)(4+2i) and (1+i)(-1+i), we need to multiply the numerator and denominator by the conjugate of the denominator to remove the imaginary part from the denominator.\newlineThe conjugate of (1+i)(-1+i) is (1i)(-1-i).\newlineSo, we multiply both the numerator and the denominator by (1i)(-1-i).\newline4+2i1+i1i1i\frac{4+2i}{-1+i} \cdot \frac{-1-i}{-1-i}
  2. Distribute Numerator: Now, we distribute the numerator:\newline(4+2i)×(1i)=4×(1)+4×(i)+2i×(1)+2i×(i)(4+2i) \times (-1-i) = 4\times(-1) + 4\times(-i) + 2i\times(-1) + 2i\times(-i)\newline=44i2i+2i2= -4 - 4i - 2i + 2i^2\newlineSince i2=1i^2 = -1, we replace 2i22i^2 with 2-2.\newline=44i2i2= -4 - 4i - 2i - 2\newline=66i= -6 - 6i
  3. Distribute Denominator: Next, we distribute the denominator:\newline(1+i)(1i)=(1)(1)+(1)(i)+i(1)+i(i)(-1+i) \cdot (-1-i) = (-1)\cdot(-1) + (-1)\cdot(-i) + i\cdot(-1) + i\cdot(-i)\newline=1+iii2= 1 + i - i - i^2\newlineAgain, since i2=1i^2 = -1, we replace i2-i^2 with 11.\newline=1+ii+1= 1 + i - i + 1\newline=2= 2
  4. Simplify Result: Now we have the simplified numerator and denominator:\newlineNumerator: 66i-6 - 6i\newlineDenominator: 22\newlineWe divide both the real part and the imaginary part of the numerator by the denominator:\newline(66i)/2(-6 - 6i) / 2\newline=6/2(6i/2)= -6/2 - (6i/2)\newline=33i= -3 - 3i

More problems from Add, subtract, multiply, and divide polynomials