Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(-4-2i)/(1-i)

Divide the following complex numbers.\newline42i1i \frac{-4-2 i}{1-i}

Full solution

Q. Divide the following complex numbers.\newline42i1i \frac{-4-2 i}{1-i}
  1. Distribute numerator: Now we distribute the numerator.\newline(42i)(1+i)=(4)(1)+(4)(i)+(2i)(1)+(2i)(i)(-4-2i)(1+i) = (-4)(1) + (-4)(i) + (-2i)(1) + (-2i)(i)\newline=44i2i2i2= -4 - 4i - 2i - 2i^2\newlineSince i2=1i^2 = -1, we replace i2i^2 with 1-1.\newline=44i2i+2= -4 - 4i - 2i + 2
  2. Combine like terms (numerator): Combine like terms in the numerator.\newline4+24i2i=26i-4 + 2 - 4i - 2i = -2 - 6i\newlineSo the numerator after simplification is 26i-2 - 6i.
  3. Distribute denominator: Now we distribute the denominator.\newline(1+i)(1+i)=(1)(1)+(1)(i)+(i)(1)+(i)(i)(1+i)(1+i) = (1)(1) + (1)(i) + (i)(1) + (i)(i)\newline=1+i+i+i2= 1 + i + i + i^2\newlineAgain, since i2=1i^2 = -1, we replace i2i^2 with 1-1.\newline=1+i+i1= 1 + i + i - 1
  4. Combine like terms (denominator): Combine like terms in the denominator.\newline11+i+i=0+2i1 - 1 + i + i = 0 + 2i\newlineSo the denominator after simplification is 2i2i.
  5. Divide numerator by denominator: Now we divide the simplified numerator by the simplified denominator.\newline(26i)/(2i)(-2 - 6i) / (2i)\newlineTo divide by 2i2i, we multiply both the numerator and the denominator by 1/2i1/2i.\newline(26i)(1/2i)/(2i1/2i)(-2 - 6i) \cdot (1/2i) / (2i \cdot 1/2i)
  6. Simplify expression: Simplify the expression.\newline(22i)(6i2i)(-\frac{2}{2i}) - (\frac{6i}{2i})\newline= 1i3-\frac{1}{i} - 3\newlineSince dividing by ii is the same as multiplying by i-i (because ii=i2=1i \cdot -i = -i^2 = 1), we can rewrite 1i-\frac{1}{i} as 1i1 \cdot -i.\newline= 1i3-1 \cdot -i - 3\newline= i3i - 3

More problems from Add, subtract, multiply, and divide polynomials