Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(4+19 i)/(-5-2i)

Divide the following complex numbers.\newline4+19i52i \frac{4+19 i}{-5-2 i}

Full solution

Q. Divide the following complex numbers.\newline4+19i52i \frac{4+19 i}{-5-2 i}
  1. Find Conjugate: To divide complex numbers, we multiply the numerator and denominator by the conjugate of the denominator. The conjugate of a complex number a+bia + bi is abia - bi. So, the conjugate of 52i-5 - 2i is 5+2i-5 + 2i.
  2. Multiply Numerator and Denominator: Multiply the numerator (4+19i)(4+19i) and the denominator (52i)(-5-2i) by the conjugate of the denominator (5+2i)(-5+2i).\newline(4+19i)×(5+2i)/((52i)×(5+2i))(4+19i) \times (-5+2i) / ((-5-2i) \times (-5+2i))
  3. Multiply Numerators: First, we'll multiply out the numerators:\newline(4+19i)×(5+2i)=20+8i95i+38i2(4+19i) \times (-5+2i) = -20 + 8i - 95i + 38i^2\newlineSince i2=1i^2 = -1, we can simplify this to:\newline20+8i95i38=5887i-20 + 8i - 95i - 38 = -58 - 87i
  4. Multiply Denominators: Next, we'll multiply out the denominators:\newline(52i)×(5+2i)=2510i+10i4i2(-5-2i) \times (-5+2i) = 25 - 10i + 10i - 4i^2\newlineSince i2=1i^2 = -1, this simplifies to:\newline254(1)=25+4=2925 - 4(-1) = 25 + 4 = 29
  5. Divide Numerator by Denominator: Now we divide the simplified numerator by the simplified denominator: (5887i)/29(-58 - 87i) / 29
  6. Divide Real and Imaginary Parts: Divide both the real and imaginary parts by 2929:
    Real part: 58/29=2-58 / 29 = -2
    Imaginary part: 87i/29=3i-87i / 29 = -3i
  7. Combine Real and Imaginary Parts: Combine the real and imaginary parts to get the final answer: 23i-2 - 3i

More problems from Add, subtract, multiply, and divide polynomials