Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(-32+8i)/(5+3i)

Divide the following complex numbers.\newline32+8i5+3i \frac{-32+8 i}{5+3 i}

Full solution

Q. Divide the following complex numbers.\newline32+8i5+3i \frac{-32+8 i}{5+3 i}
  1. Multiply Numerator by Conjugate: Multiply the numerator (32+8i)(-32+8i) by the conjugate of the denominator (53i)(5-3i).(32+8i)×(53i)=(32×5+32×(3i)+8i×5+8i×(3i))(-32+8i) \times (5-3i) = (-32\times 5 + -32\times(-3i) + 8i\times 5 + 8i\times(-3i))=(160+96i+40i24i2)= (-160 + 96i + 40i - 24i^2)Since i2=1i^2 = -1, we replace 24i2-24i^2 with 2424.=(160+96i+40i+24)= (-160 + 96i + 40i + 24)=(160+24)+(96i+40i)= (-160 + 24) + (96i + 40i)=136+136i= -136 + 136i
  2. Multiply Denominator by Conjugate: Now, multiply the denominator (5+3i)(5+3i) by its conjugate (53i)(5-3i).(5+3i)×(53i)=(5×5+5×(3i)+3i×5+3i×(3i))=(2515i+15i9i2)(5+3i) \times (5-3i) = (5\times 5 + 5\times (-3i) + 3i\times 5 + 3i\times (-3i)) = (25 - 15i + 15i - 9i^2) Again, since i2=1i^2 = -1, we replace 9i2-9i^2 with 99.=(25+9)+(15i+15i)=34+0i=34= (25 + 9) + (-15i + 15i) = 34 + 0i = 34
  3. Divide Results: Divide the result from the numerator by the result from the denominator.\newline(136+136i)/34=(136/34)+(136i/34)(-136 + 136i) / 34 = (-136/34) + (136i/34)\newline=4+4i= -4 + 4i

More problems from Add, subtract, multiply, and divide polynomials