Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(30+20 i)/(1+5i)

Divide the following complex numbers.\newline30+20i1+5i \frac{30+20 i}{1+5 i}

Full solution

Q. Divide the following complex numbers.\newline30+20i1+5i \frac{30+20 i}{1+5 i}
  1. Write problem: Write down the problem.\newlineDivide the complex numbers (30+20i)(30+20i) by (1+5i)(1+5i).
  2. Multiply by conjugate: Multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of (1+5i)(1+5i) is (15i)(1-5i). We multiply both the numerator and the denominator by this conjugate to remove the imaginary part from the denominator. (30+20i)(15i)(1+5i)(15i)\frac{(30+20i)(1-5i)}{(1+5i)(1-5i)}
  3. Perform numerator multiplication: Perform the multiplication in the numerator.\newline(30+20i)(15i)=30(1)+30(5i)+20i(1)+20i(5i)(30+20i)(1-5i) = 30(1) + 30(-5i) + 20i(1) + 20i(-5i)\newline=30150i+20i100i2= 30 - 150i + 20i - 100i^2\newlineSince i2=1i^2 = -1, we replace i2i^2 with 1-1.\newline=30150i+20i+100= 30 - 150i + 20i + 100\newline=130130i= 130 - 130i
  4. Perform denominator multiplication: Perform the multiplication in the denominator.\newline(1+5i)(15i)=1(1)+1(5i)+5i(1)5i(5i)(1+5i)(1-5i) = 1(1) + 1(-5i) + 5i(1) - 5i(5i)\newline=15i+5i25i2= 1 - 5i + 5i - 25i^2\newlineAgain, since i2=1i^2 = -1, we replace i2i^2 with 1-1.\newline=125(1)= 1 - 25(-1)\newline=1+25= 1 + 25\newline=26= 26
  5. Divide numerator by denominator: Divide the results from Step 33 by the result from Step 44.\newline(130130i)/26(130 - 130i) / 26\newline= 130/26130/26 - (130i/26)(130i/26)\newline= 55i5 - 5i

More problems from Add, subtract, multiply, and divide polynomials