Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(-3+15 i)/(3-2i)

Divide the following complex numbers.\newline3+15i32i \frac{-3+15 i}{3-2 i}

Full solution

Q. Divide the following complex numbers.\newline3+15i32i \frac{-3+15 i}{3-2 i}
  1. Multiply Numerators and Denominators: Now we multiply the numerators and the denominators separately.\newlineNumerator: (3+15i)(3+2i)(-3+15i)(3+2i)\newlineDenominator: (32i)(3+2i)(3-2i)(3+2i)
  2. Expand and Combine Numerator: First, we'll expand the numerator using the distributive property (FOIL method).\newline(3)(3)+(3)(2i)+(15i)(3)+(15i)(2i)(-3)(3) + (-3)(2i) + (15i)(3) + (15i)(2i)\newline= 96i+45i+30i2-9 - 6i + 45i + 30i^2\newlineSince i2=1i^2 = -1, we replace 30i230i^2 with 30-30.\newline= 96i+45i30-9 - 6i + 45i - 30
  3. Expand and Combine Denominator: Now we combine like terms in the numerator.\newline9306i+45i-9 - 30 - 6i + 45i\newline=39+39i= -39 + 39i
  4. Simplify Numerator and Denominator: Next, we'll expand the denominator using the distributive property. \newline(3)(3)+(3)(2i)(2i)(3)(2i)(2i)(3)(3) + (3)(2i) - (2i)(3) - (2i)(2i)\newline=9+6i6i4i2= 9 + 6i - 6i - 4i^2\newlineAgain, since i2=1i^2 = -1, we replace 4i2-4i^2 with 44.\newline=9+6i6i+4= 9 + 6i - 6i + 4
  5. Divide Numerator by Denominator: Now we combine like terms in the denominator.\newline9+4+6i6i9 + 4 + 6i - 6i\newline= 1313
  6. Final Simplified Form: We now have the simplified numerator and denominator.\newlineNumerator: 39+39i-39 + 39i\newlineDenominator: 1313\newlineWe divide each term in the numerator by the denominator.\newline(39/13)+(39i/13)(-39/13) + (39i/13)
  7. Final Simplified Form: We now have the simplified numerator and denominator.\newlineNumerator: 39+39i-39 + 39i\newlineDenominator: 1313\newlineWe divide each term in the numerator by the denominator.\newline(39/13)+(39i/13)(-39/13) + (39i/13) Simplify each term.\newline39/13=3-39/13 = -3\newline39i/13=3i39i/13 = 3i\newlineSo the final simplified form is:\newline3+3i-3 + 3i

More problems from Add, subtract, multiply, and divide polynomials