Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(-3-15 i)/(-2+3i)

Divide the following complex numbers.\newline315i2+3i \frac{-3-15 i}{-2+3 i}

Full solution

Q. Divide the following complex numbers.\newline315i2+3i \frac{-3-15 i}{-2+3 i}
  1. Problem: Write down the problem.\newlineWe need to divide the complex numbers (315i)(-3-15i) by (2+3i)(-2+3i).
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of (2+3i)(-2+3i) is (23i)(-2-3i). We multiply both the numerator and the denominator by this conjugate to remove the imaginary part from the denominator. ((315i)(23i))/((2+3i)(23i))((-3-15i) \cdot (-2-3i)) / ((-2+3i) \cdot (-2-3i))
  3. Numerator Multiplication: Perform the multiplication in the numerator.\newline(315i)×(23i)=(3×2)+(3×3i)+(15i×2)+(15i×3i)(-3-15i) \times (-2-3i) = (-3 \times -2) + (-3 \times -3i) + (-15i \times -2) + (-15i \times -3i)\newline=6+9i+30i+45= 6 + 9i + 30i + 45\newline=6+39i+45= 6 + 39i + 45\newline=51+39i= 51 + 39i
  4. Denominator Multiplication: Perform the multiplication in the denominator.\newline(2+3i)(23i)=(22)+(23i)+(3i2)+(3i3i)(-2+3i) * (-2-3i) = (-2 * -2) + (-2 * -3i) + (3i * -2) + (3i * -3i)\newline=46i6i9= 4 - 6i - 6i - 9\newline=412i+9= 4 - 12i + 9\newline=1312i+12i= 13 - 12i + 12i (The imaginary parts cancel each other out)\newline=13= 13
  5. Division: Divide the results from the numerator by the denominator.\newline(51+39i)/13(51 + 39i) / 13\newline= (51/13)+(39i/13)(51/13) + (39i/13)\newline= 3+3i3 + 3i

More problems from Add, subtract, multiply, and divide polynomials