Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(25+19 i)/(5-3i)

Divide the following complex numbers.\newline25+19i53i \frac{25+19 i}{5-3 i}

Full solution

Q. Divide the following complex numbers.\newline25+19i53i \frac{25+19 i}{5-3 i}
  1. Multiply by conjugate: To divide complex numbers, we multiply the numerator and denominator by the conjugate of the denominator. The conjugate of (53i)(5-3i) is (5+3i)(5+3i).25+19i53i×5+3i5+3i\frac{25+19i}{5-3i} \times \frac{5+3i}{5+3i}
  2. Multiply numerators and denominators: Now, we multiply the numerators together and the denominators together.\newlineNumerator: (25+19i)(5+3i)(25+19i)(5+3i)\newlineDenominator: (53i)(5+3i)(5-3i)(5+3i)
  3. Multiply out the numerator: First, we'll multiply out the numerator using the distributive property (FOIL method).\newline(25+19i)(5+3i)=255+253i+19i5+19i3i(25+19i)(5+3i) = 25\cdot 5 + 25\cdot 3i + 19i\cdot 5 + 19i\cdot 3i\newline=125+75i+95i+57i2= 125 + 75i + 95i + 57i^2\newlineSince i2=1i^2 = -1, we replace 57i257i^2 with 57-57.\newline=125+75i+95i57= 125 + 75i + 95i - 57\newline=125+170i57= 125 + 170i - 57\newline=68+170i= 68 + 170i
  4. Multiply out the denominator: Next, we'll multiply out the denominator.\newline(53i)(5+3i)=5×5+5×3i3i×53i×3i(5-3i)(5+3i) = 5\times 5 + 5\times 3i - 3i\times 5 - 3i\times 3i\newline=25+15i15i9i2= 25 + 15i - 15i - 9i^2\newlineSince i2=1i^2 = -1, we replace 9i2-9i^2 with 99.\newline=259= 25 - 9\newline=16= 16
  5. Simplify numerator and denominator: Now we have the simplified numerator and denominator.\newlineNumerator: 68+170i68 + 170i\newlineDenominator: 1616\newlineWe divide both the real and imaginary parts of the numerator by the denominator.\newline(68+170i)/16(68 + 170i) / 16\newline=68/16+(170/16)i= 68/16 + (170/16)i\newline=4.25+10.625i= 4.25 + 10.625i

More problems from Add, subtract, multiply, and divide polynomials