Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(-20+4i)/(3+2i)

Divide the following complex numbers.\newline20+4i3+2i \frac{-20+4 i}{3+2 i}

Full solution

Q. Divide the following complex numbers.\newline20+4i3+2i \frac{-20+4 i}{3+2 i}
  1. Problem Statement: Write down the problem to solve.\newlineWe need to divide the complex numbers (20+4i)(-20+4i) by (3+2i)(3+2i).
  2. Multiply by Conjugate: Multiply the numerator and denominator by the conjugate of the denominator. The conjugate of (3+2i)(3+2i) is (32i)(3-2i). We multiply both the numerator and denominator by this conjugate to remove the imaginary part from the denominator. ((20+4i)/(3+2i))((32i)/(32i))((-20+4i)/(3+2i)) \cdot ((3-2i)/(3-2i))
  3. Numerator Multiplication: Perform the multiplication in the numerator.\newline(20+4i)×(32i)=(20×3)+(20×2i)+(4i×3)+(4i×2i)(-20+4i) \times (3-2i) = (-20\times3) + (-20\times-2i) + (4i\times3) + (4i\times-2i)\newline=60+40i+12i8i2= -60 + 40i + 12i - 8i^2\newlineSince i2=1i^2 = -1, we replace 8i2-8i^2 with 88.\newline=60+40i+12i+8= -60 + 40i + 12i + 8\newline=52+52i= -52 + 52i
  4. Denominator Multiplication: Perform the multiplication in the denominator.\newline(3+2i)×(32i)=(3×3)+(3×2i)+(2i×3)+(2i×2i)(3+2i) \times (3-2i) = (3\times3) + (3\times-2i) + (2i\times3) + (2i\times-2i)\newline=96i+6i4i2= 9 - 6i + 6i - 4i^2\newlineAgain, since i2=1i^2 = -1, we replace 4i2-4i^2 with 44.\newline=9+4= 9 + 4\newline=13= 13
  5. Final Division: Divide the results from Step 33 by the result from Step 44.\newline(52+52i)/13(-52 + 52i) / 13\newline=(52/13)+(52i/13)= (-52/13) + (52i/13)\newline=4+4i= -4 + 4i

More problems from Add, subtract, multiply, and divide polynomials