Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(2-8i)/(3+5i)

Divide the following complex numbers.\newline28i3+5i \frac{2-8 i}{3+5 i}

Full solution

Q. Divide the following complex numbers.\newline28i3+5i \frac{2-8 i}{3+5 i}
  1. Find Conjugate: To divide complex numbers, we multiply the numerator and denominator by the conjugate of the denominator. The conjugate of a complex number a+bia + bi is abia - bi. So, the conjugate of (3+5i)(3+5i) is (35i)(3-5i).
  2. Multiply Numerator and Denominator: Multiply the numerator (28i)(2-8i) by the conjugate of the denominator (35i)(3-5i).\newline(28i)(35i)(2-8i)(3-5i)
  3. Use FOIL Method: Use the distributive property (FOIL method) to multiply the two complex numbers.\newline(2×3)+(2×(5i))+(8i×3)+(8i×(5i))(2\times3) + (2\times(-5i)) + (-8i\times3) + (-8i\times(-5i))
  4. Perform Multiplication: Perform the multiplication.\newline610i24i+40i26 - 10i - 24i + 40i^2\newlineSince i2=1i^2 = -1, replace i2i^2 with 1-1.\newline610i24i406 - 10i - 24i - 40
  5. Combine Like Terms: Combine like terms.\newline(640)+(10i24i)(6 - 40) + (-10i - 24i)\newline3434i-34 - 34i
  6. Multiply Denominator by Conjugate: Now, multiply the denominator (3+5i)(3+5i) by its conjugate (35i)(3-5i).\newline(3+5i)(35i)(3+5i)(3-5i)
  7. Use FOIL Method: Use the distributive property (FOIL method) to multiply the two complex numbers.\newline(3×3)+(3×(5i))+(5i×3)+(5i×(5i))(3\times 3) + (3\times (-5i)) + (5i\times 3) + (5i\times (-5i))
  8. Perform Multiplication: Perform the multiplication.\newline915i+15i25i29 - 15i + 15i - 25i^2\newlineSince i2=1i^2 = -1, replace i2i^2 with 1-1.\newline925(1)9 - 25(-1)
  9. Simplify Expression: Simplify the expression. 9+259 + 25
  10. Add Numbers: Add the numbers. 3434
  11. Divide Numerator by Denominator: Now we have the simplified numerator and denominator. The numerator is 3434i-34 - 34i, and the denominator is 3434. Divide the numerator by the denominator.\newline3434i34\frac{-34 - 34i}{34}
  12. Divide Each Term: Divide each term in the numerator by the denominator.\newline(3434)(34i34)(-\frac{34}{34}) - (\frac{34i}{34})
  13. Simplify Each Term: Simplify each term.\newline1i-1 - i

More problems from Add, subtract, multiply, and divide polynomials