Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(2-16 i)/(-3-i)

Divide the following complex numbers.\newline216i3i \frac{2-16 i}{-3-i}

Full solution

Q. Divide the following complex numbers.\newline216i3i \frac{2-16 i}{-3-i}
  1. Write Division Expression: Write the division expression.\newlineWe need to divide the complex number (216i)(2-16i) by (3i)(-3-i). To do this, we will multiply the numerator and the denominator by the conjugate of the denominator.\newlineThe conjugate of a complex number a+bia + bi is abia - bi. So, the conjugate of (3i)(-3-i) is (3+i)(-3+i).
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator. \newline(216i)/(3i)×(3+i)/(3+i)(2-16i)/(-3-i) \times (-3+i)/(-3+i)\newlineThis step is done to remove the imaginary part from the denominator.
  3. Apply FOIL to Numerator: Apply the distributive property (FOIL) to the numerator.\newline(216i)(3+i)=2(3)+2(i)16i(3)16i(i)(2-16i)(-3+i) = 2(-3) + 2(i) - 16i(-3) - 16i(i)\newline=6+2i+48i+16(i2)= -6 + 2i + 48i + 16(i^2)\newlineSince i2=1i^2 = -1, we replace i2i^2 with 1-1.\newline=6+2i+48i16= -6 + 2i + 48i - 16\newline=22+50i= -22 + 50i
  4. Apply FOIL to Denominator: Apply the distributive property (FOIL) to the denominator.\newline(3i)(3+i)=(3)(3)+(3)(i)i(3)i(i)(-3-i)(-3+i) = (-3)(-3) + (-3)(i) - i(-3) - i(i)\newline=93i+3ii2= 9 - 3i + 3i - i^2\newlineAgain, since i2=1i^2 = -1, we replace i2i^2 with 1-1.\newline=91= 9 - 1\newline=8= 8
  5. Write Result of Division: Write the result of the division.\newlineNow we have the simplified numerator and denominator:\newlineNumerator: 22+50i-22 + 50i\newlineDenominator: 88\newlineSo the division is:\newline(22+50i)/8(-22 + 50i) / 8
  6. Divide Numerator by Denominator: Divide each term in the numerator by the denominator.\newline228+50i8-\frac{22}{8} + \frac{50i}{8}\newlineSimplify each term:\newline228=114-\frac{22}{8} = -\frac{11}{4}\newline50i8=25i4\frac{50i}{8} = \frac{25i}{4}
  7. Write Final Answer: Write the final answer.\newlineThe result of the division is:\newline114+25i4-\frac{11}{4} + \frac{25i}{4}

More problems from Add, subtract, multiply, and divide polynomials