Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(-14+22 i)/(-2-4i)

Divide the following complex numbers.\newline14+22i24i \frac{-14+22 i}{-2-4 i}

Full solution

Q. Divide the following complex numbers.\newline14+22i24i \frac{-14+22 i}{-2-4 i}
  1. Multiply by conjugate: To divide complex numbers, we multiply the numerator and denominator by the conjugate of the denominator. The conjugate of a complex number a+bia + bi is abia - bi. So, the conjugate of (24i)(-2-4i) is (2+4i)(-2+4i).
  2. Perform multiplication: Now, we multiply the numerator (14+22i)(-14+22i) by the conjugate of the denominator (2+4i)(-2+4i).(14+22i)×(2+4i)=(14)(2)+(14)(4i)+(22i)(2)+(22i)(4i)(-14+22i) \times (-2+4i) = (-14)(-2) + (-14)(4i) + (22i)(-2) + (22i)(4i)
  3. Replace i2i^2 with 1-1: Perform the multiplication:\newline(14)(2)=28(-14)(-2) = 28\newline(14)(4i)=56i(-14)(4i) = -56i\newline(22i)(2)=44i(22i)(-2) = -44i\newline(22i)(4i)=88i2(22i)(4i) = 88i^2\newlineSince i2=1i^2 = -1, we replace 88i288i^2 with 88-88.
  4. Add results of multiplication: Now, add the results of the multiplication:\newline2856i44i88=28100i8828 - 56i - 44i - 88 = 28 - 100i - 88\newlineCombine like terms:\newline2888=6028 - 88 = -60\newline56i44i=100i-56i - 44i = -100i\newlineSo, we have 60100i-60 - 100i.
  5. Multiply denominator by conjugate: Next, we multiply the denominator (24i)(-2-4i) by its conjugate (2+4i)(-2+4i).(24i)×(2+4i)=(2)(2)+(2)(4i)+(4i)(2)+(4i)(4i)(-2-4i) \times (-2+4i) = (-2)(-2) + (-2)(4i) + (-4i)(-2) + (-4i)(4i)
  6. Perform multiplication: Perform the multiplication:\newline(2)(2)=4(-2)(-2) = 4\newline(2)(4i)=8i(-2)(4i) = -8i\newline(4i)(2)=8i(-4i)(-2) = 8i\newline(4i)(4i)=16i2(-4i)(4i) = -16i^2\newlineAgain, since i2=1i^2 = -1, we replace 16i2-16i^2 with 1616.
  7. Add results of multiplication: Now, add the results of the multiplication:\newline48i+8i+16=4+164 - 8i + 8i + 16 = 4 + 16\newlineThe imaginary parts cancel out: 8i+8i=0-8i + 8i = 0\newlineSo, we have 4+16=204 + 16 = 20.
  8. Divide numerator by denominator: Finally, we divide the result from the numerator by the result from the denominator: (60100i)/20=60/20(100i/20)(-60 - 100i) / 20 = -60/20 - (100i/20)
  9. Simplify the division: Simplify the division:\newline6020=3-\frac{60}{20} = -3\newline100i20=5i\frac{100i}{20} = 5i\newlineSo, the final result is 35i-3 - 5i.

More problems from Add, subtract, multiply, and divide polynomials