Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(-11-3i)/(1-2i)

Divide the following complex numbers.\newline113i12i \frac{-11-3 i}{1-2 i}

Full solution

Q. Divide the following complex numbers.\newline113i12i \frac{-11-3 i}{1-2 i}
  1. Multiply by conjugate: To divide complex numbers, we multiply the numerator and denominator by the conjugate of the denominator. The conjugate of (12i)(1-2i) is (1+2i)(1+2i).\newline(113i)/(12i)(1+2i)/(1+2i)(-11-3i)/(1-2i) \cdot (1+2i)/(1+2i)
  2. Multiply numerators and denominators: Now, we multiply the numerators together and the denominators together.\newlineNumerator: (113i)(1+2i)(-11-3i)(1+2i)\newlineDenominator: (12i)(1+2i)(1-2i)(1+2i)
  3. Multiply out the numerator: First, we'll multiply out the numerator.\newline(113i)(1+2i)=11(1)+11(2i)+3i(1)+3i(2i)(-11-3i)(1+2i) = -11(1) + -11(2i) + -3i(1) + -3i(2i)\newline=1122i3i6i2= -11 - 22i - 3i - 6i^2\newlineSince i2=1i^2 = -1, we replace 6i2-6i^2 with 66.\newline=1122i3i+6= -11 - 22i - 3i + 6\newline=525i= -5 - 25i
  4. Multiply out the denominator: Next, we'll multiply out the denominator.\newline(12i)(1+2i)=1(1)+1(2i)2i(1)2i(2i)(1-2i)(1+2i) = 1(1) + 1(2i) - 2i(1) - 2i(2i)\newline=1+2i2i4i2= 1 + 2i - 2i - 4i^2\newlineAgain, since i2=1i^2 = -1, we replace 4i2-4i^2 with 44.\newline=14= 1 - 4\newline=3= -3
  5. Simplify numerator and denominator: Now we have the simplified numerator and denominator.\newlineNumerator: 525i-5 - 25i\newlineDenominator: 3-3\newlineWe divide the numerator by the denominator.\newline525i3\frac{-5 - 25i}{-3}
  6. Divide numerator by denominator: Divide each term in the numerator by the denominator.\newline5/3=53-5 / -3 = \frac{5}{3}\newline25i/3=25i3-25i / -3 = \frac{25i}{3}\newlineSo the division gives us:\newline(53)+(253)i\left(\frac{5}{3}\right) + \left(\frac{25}{3}\right)i

More problems from Add, subtract, multiply, and divide polynomials