Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(11+24 i)/(-4-i)

Divide the following complex numbers.\newline11+24i4i \frac{11+24 i}{-4-i}

Full solution

Q. Divide the following complex numbers.\newline11+24i4i \frac{11+24 i}{-4-i}
  1. Problem Statement: Write down the problem to solve.\newlineDivide the complex numbers (11+24i)(11+24i) by (4i)(-4-i).
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of (4i)(-4-i) is (4+i)(-4+i). We multiply both the numerator and the denominator by this conjugate to remove the imaginary part from the denominator. (11+24i)(4+i)(4i)(4+i)\frac{(11+24i)(-4+i)}{(-4-i)(-4+i)}
  3. Expand Numerator: Expand the numerator using the distributive property (FOIL method).\newline(11+24i)(4+i)=11(4)+11(i)+24i(4)+24i(i)(11+24i)(-4+i) = 11(-4) + 11(i) + 24i(-4) + 24i(i)\newline=4411i96i24i2= -44 - 11i - 96i - 24i^2\newlineSince i2=1i^2 = -1, we have:\newline=4411i96i+24= -44 - 11i - 96i + 24\newline=20107i= -20 - 107i
  4. Expand Denominator: Expand the denominator using the distributive property.\newline(4i)(4+i)=(4)(4)+(4)(i)i(4)i(i)(-4-i)(-4+i) = (-4)(-4) + (-4)(i) - i(-4) - i(i)\newline=164i+4ii2= 16 - 4i + 4i - i^2\newlineSince i2=1i^2 = -1, we have:\newline=16+1= 16 + 1\newline=17= 17
  5. Write Division: Write the division of the expanded numerator by the expanded denominator.20107i17\frac{-20 - 107i}{17}
  6. Divide Numerator by Denominator: Divide each term in the numerator by the denominator separately.\newline2017107i17-\frac{20}{17} - \frac{107i}{17}
  7. Simplify Division: Simplify the division for each term. \newline201710717i-\frac{20}{17} - \frac{107}{17}i

More problems from Add, subtract, multiply, and divide polynomials