Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(10+40 i)/(-3+5i)

Divide the following complex numbers.\newline10+40i3+5i \frac{10+40 i}{-3+5 i}

Full solution

Q. Divide the following complex numbers.\newline10+40i3+5i \frac{10+40 i}{-3+5 i}
  1. Write Problem: Write down the problem to solve.\newlineWe need to divide the complex number (10+40i)(10+40i) by the complex number (3+5i)(-3+5i).
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of (3+5i)(-3+5i) is (35i)(-3-5i). We multiply both the numerator and the denominator by this conjugate to remove the imaginary part from the denominator. (10+40i)(35i)(3+5i)(35i)\frac{(10+40i) \cdot (-3-5i)}{(-3+5i) \cdot (-3-5i)}
  3. Apply FOIL to Numerators: Apply the distributive property (FOIL) to multiply out the numerators.\newline(10+40i)×(35i)=10×(3)+10×(5i)+40i×(3)+40i×(5i)(10+40i) \times (-3-5i) = 10\times(-3) + 10\times(-5i) + 40i\times(-3) + 40i\times(-5i)\newline=3050i120i200i2= -30 - 50i - 120i - 200i^2\newlineSince i2=1i^2 = -1, we replace 200i2-200i^2 with 200200.\newline=3050i120i+200= -30 - 50i - 120i + 200\newline=170170i= 170 - 170i
  4. Apply FOIL to Denominators: Apply the distributive property (FOIL) to multiply out the denominators.\newline(3+5i)(35i)=(3)(3)+(3)(5i)+5i(3)+5i(5i)(-3+5i) * (-3-5i) = (-3)*(-3) + (-3)*(-5i) + 5i*(-3) + 5i*(-5i)\newline=9+15i15i25i2= 9 + 15i - 15i - 25i^2\newlineSince i2=1i^2 = -1, we replace 25i2-25i^2 with 2525.\newline=9+15i15i+25= 9 + 15i - 15i + 25\newline=9+25= 9 + 25\newline=34= 34
  5. Divide Simplified Numbers: Divide the simplified numerator by the simplified denominator.\newline(170170i)/34(170 - 170i) / 34\newline= (170/34)(170i/34)(170/34) - (170i/34)\newline= 55i5 - 5i

More problems from Add, subtract, multiply, and divide polynomials