Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(1+8i)/(-2-i)

Divide the following complex numbers.\newline1+8i2i \frac{1+8 i}{-2-i}

Full solution

Q. Divide the following complex numbers.\newline1+8i2i \frac{1+8 i}{-2-i}
  1. Multiply by Conjugate: To divide complex numbers, multiply the numerator and denominator by the conjugate of the denominator. Conjugate of (2i)(-2-i) is (2+i)(-2+i).
  2. Multiply Numerators: (1+8i)/(2i)×(2+i)/(2+i)(1+8i)/(-2-i) \times (-2+i)/(-2+i)
  3. Simplify Numerator: Multiply the numerators: (1+8i)(2+i)(1+8i)(-2+i).1(2)+1i+8i(2)+8ii=2+i16i8i21\cdot(-2) + 1\cdot i + 8i\cdot(-2) + 8i\cdot i = -2 + i - 16i - 8i^2. Remember that i2=1i^2 = -1.
  4. Simplify Expression: Simplify the expression: 215i+8(1)-2 - 15i + 8(-1).\newline215i8=1015i-2 - 15i - 8 = -10 - 15i.
  5. Multiply Denominators: Now, multiply the denominators: (2i)(2+i)(-2-i)(-2+i).2(2)2i+i(2)+ii=42i+2ii2-2\cdot(-2) -2\cdot i + i\cdot(-2) + i\cdot i = 4 - 2i + 2i - i^2. Again, i2=1i^2 = -1.
  6. Simplify Denominator: Simplify the denominator: 4i24 - i^2. 4(1)=4+1=54 - (-1) = 4 + 1 = 5.
  7. Divide Numerator by Denominator: Divide the simplified numerator by the simplified denominator. (1015i)/5(-10 - 15i) / 5.
  8. Simplify Division: Simplify the division: 10/5(15i)/5-10/5 - (15i)/5.\newline23i-2 - 3i.

More problems from Add, subtract, multiply, and divide polynomials