Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(-1+5i)/(1-i)

Divide the following complex numbers.\newline1+5i1i \frac{-1+5 i}{1-i}

Full solution

Q. Divide the following complex numbers.\newline1+5i1i \frac{-1+5 i}{1-i}
  1. Multiply by conjugate: To divide complex numbers, we multiply the numerator and denominator by the conjugate of the denominator. The conjugate of (1i)(1-i) is (1+i)(1+i).\newline(1+5i)/(1i)(1+i)/(1+i)(-1+5i)/(1-i) \cdot (1+i)/(1+i)
  2. Multiply numerators and denominators: Now, we multiply the numerators together and the denominators together.\newlineNumerator: (1+5i)(1+i)(-1+5i)(1+i)\newlineDenominator: (1i)(1+i)(1-i)(1+i)
  3. Multiply out the numerator: First, we'll multiply out the numerator.\newline(1)(1)+(1)(i)+(5i)(1)+(5i)(i)(-1)(1) + (-1)(i) + (5i)(1) + (5i)(i)\newline=1i+5i+5i2= -1 - i + 5i + 5i^2\newlineSince i2=1i^2 = -1, we replace 5i25i^2 with 5-5.\newline=1i+5i5= -1 - i + 5i - 5
  4. Combine like terms in numerator: Now, we combine like terms in the numerator.\newline15+(i+5i)-1 - 5 + (-i + 5i)\newline=6+4i= -6 + 4i
  5. Multiply out the denominator: Next, we'll multiply out the denominator.\newline(1)(1)+(1)(i)(i)(1)(i)(i)(1)(1) + (1)(i) - (i)(1) - (i)(i)\newline=1+iii2= 1 + i - i - i^2\newlineAgain, since i2=1i^2 = -1, we replace i2-i^2 with 11.\newline=1+ii+1= 1 + i - i + 1
  6. Combine like terms in denominator: Now, we combine like terms in the denominator. 1+1+(ii)=21 + 1 + (i - i) = 2
  7. Divide simplified numerator by denominator: Finally, we divide the simplified numerator by the simplified denominator.\newline(6+4i)/2(-6 + 4i) / 2\newline=3+2i= -3 + 2i

More problems from Add, subtract, multiply, and divide polynomials