Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the volume of a square-based pyramid with base side length of 8 inches and a height of 12 inches? Write your answer in the box provided.
_____in^(3)

What is the volume of a square-based pyramid with base side length of 88 inches and a height of 1212 inches? Write your answer in the box provided.\newline_____in3. \_\_\_\_\_ \text{in}^{3}.

Full solution

Q. What is the volume of a square-based pyramid with base side length of 88 inches and a height of 1212 inches? Write your answer in the box provided.\newline_____in3. \_\_\_\_\_ \text{in}^{3}.
  1. Calculate Base Area: To find the volume of a square-based pyramid, we use the formula:\newlineVolume = (1/3)×base area×height(1/3) \times \text{base area} \times \text{height}\newlineFirst, we need to calculate the base area of the square pyramid.\newlineThe base area of a square is found by squaring the side length.\newlineBase side length = 88 inches\newlineBase area = side length×side length\text{side length} \times \text{side length}
  2. Calculate Volume: Now we calculate the base area:\newlineBase area = 8inches×8inches8 \, \text{inches} \times 8 \, \text{inches}\newlineBase area = 64square inches64 \, \text{square inches}
  3. Evaluate Expression: Next, we use the volume formula for a square-based pyramid with the base area and the height:\newlineVolume = (13)×base area×height(\frac{1}{3}) \times \text{base area} \times \text{height}\newlineHeight = 1212 inches
  4. Evaluate Expression: Next, we use the volume formula for a square-based pyramid with the base area and the height:\newlineVolume = (13)×base area×height(\frac{1}{3}) \times \text{base area} \times \text{height}\newlineHeight = 1212 inchesNow we calculate the volume:\newlineVolume = (13)×64 square inches×12 inches(\frac{1}{3}) \times 64 \text{ square inches} \times 12 \text{ inches}\newlineVolume = (13)×768 cubic inches(\frac{1}{3}) \times 768 \text{ cubic inches}
  5. Evaluate Expression: Next, we use the volume formula for a square-based pyramid with the base area and the height:\newlineVolume = (1/3)×base area×height(1/3) \times \text{base area} \times \text{height}\newlineHeight = 1212 inchesNow we calculate the volume:\newlineVolume = (1/3)×64 square inches×12 inches(1/3) \times 64 \text{ square inches} \times 12 \text{ inches}\newlineVolume = (1/3)×768 cubic inches(1/3) \times 768 \text{ cubic inches}Finally, we evaluate the expression to find the volume:\newlineVolume = 256 cubic inches256 \text{ cubic inches}

More problems from Find the magnitude and direction of a vector sum