Q. Determine whether the function f(x)=−x7−x+x3 is even, odd or neither.neitherevenodd
Define function f(x): Define the function f(x). The given function is f(x)=−x7−x+x3.
Determine f(−x): Determine f(−x).Substitute −x for x in f(x) to find f(−x).f(−x)=−(−x)7−(−x)+(−x)3
Simplify f(−x): Simplify f(−x).Simplify the expression for f(−x) by calculating the powers of −x.f(−x)=−(−x)7+x−(−x)3f(−x)=−(−1)7⋅x7+x−(−1)3⋅x3f(−x)=−(−1)⋅x7+x−(−1)⋅x3f(−x)=x7+x−x3
Compare f(x) and f(−x): Compare f(x) and f(−x). We have the original function f(x)=−x7−x+x3 and the transformed function f(−x)=x7+x−x3. Since f(−x) is not equal to f(x) and f(−x) is also not equal to −f(x), the function f(x) is neither even nor odd.