Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=-x^(7)-x+x^(3) is even, odd or neither.
neither
even
odd

Determine whether the function f(x)=x7x+x3 f(x)=-x^{7}-x+x^{3} is even, odd or neither.\newlineneither\newlineeven\newlineodd

Full solution

Q. Determine whether the function f(x)=x7x+x3 f(x)=-x^{7}-x+x^{3} is even, odd or neither.\newlineneither\newlineeven\newlineodd
  1. Define function f(x)f(x): Define the function f(x)f(x). The given function is f(x)=x7x+x3f(x) = -x^7 - x + x^3.
  2. Determine f(x)f(-x): Determine f(x)f(-x).\newlineSubstitute x-x for xx in f(x)f(x) to find f(x)f(-x).\newlinef(x)=(x)7(x)+(x)3f(-x)=-(-x)^7-(-x)+(-x)^3
  3. Simplify f(x)f(-x): Simplify f(x)f(-x).\newlineSimplify the expression for f(x)f(-x) by calculating the powers of x-x.\newlinef(x)=(x)7+x(x)3f(-x)=-(-x)^7+ x -(-x)^3\newlinef(x)=(1)7x7+x(1)3x3f(-x)=-(-1)^7\cdot x^7+ x -(-1)^3\cdot x^3\newlinef(x)=(1)x7+x(1)x3f(-x)=-(-1)\cdot x^7+ x -(-1)\cdot x^3\newlinef(x)=x7+xx3f(-x)=x^7+ x -x^3
  4. Compare f(x)f(x) and f(x)f(-x): Compare f(x)f(x) and f(x)f(-x). We have the original function f(x)=x7x+x3f(x) = -x^7 - x + x^3 and the transformed function f(x)=x7+xx3f(-x) = x^7 + x - x^3. Since f(x)f(-x) is not equal to f(x)f(x) and f(x)f(-x) is also not equal to f(x)-f(x), the function f(x)f(x) is neither even nor odd.

More problems from Even and odd functions