Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the function 
f(x)=x^(6)+7x^(2)-1 is even, odd or neither.
odd
neither
even

Determine whether the function f(x)=x6+7x21 f(x)=x^{6}+7 x^{2}-1 is even, odd or neither.\newlineodd\newlineneither\newlineeven

Full solution

Q. Determine whether the function f(x)=x6+7x21 f(x)=x^{6}+7 x^{2}-1 is even, odd or neither.\newlineodd\newlineneither\newlineeven
  1. Determine Function Type: To determine if the function f(x)f(x) is even, odd, or neither, we need to compare f(x)f(x) with f(x)f(-x). If f(x)=f(x)f(-x) = f(x), then the function is even. If f(x)=f(x)f(-x) = -f(x), then the function is odd. If neither condition is met, the function is neither even nor odd.
  2. Substitute x-x in Function: First, let's find f(x)f(-x) by substituting x-x for xx in the function f(x)=x6+7x21f(x)=x^6+7x^2-1.\newlinef(x)=(x)6+7(x)21f(-x)=(-x)^6+7(-x)^2-1
  3. Simplify f(x)f(-x) Expression: Now, simplify the expression for f(x)f(-x).
    f(x)=(x)6+7(x)21f(-x)=(-x)^6+7(-x)^2-1
    f(x)=x6+7x21f(-x)=x^6+7x^2-1
  4. Compare f(x)f(x) and f(x)f(-x): We have: f(x)=x6+7x21f(x)=x^6+7x^2-1 f(x)=x6+7x21f(-x)=x^6+7x^2-1 Since f(x)=f(x)f(-x) = f(x), the function f(x)f(x) is an even function.

More problems from Even and odd functions